
Quantum LDPC Codes:
An exposition of recent results

Tushant Mittal

Abstract

LDPC CSS codes is a class of quantum error correcting codes, and a long standing open
problem was to construct such codes with distance as close to the number of qubits, N, as
possible.

Until recently, the best construction had distance slightly better than
?

N but a recent
breakhthrough one by Pantaleev and Kalachev’21 achieves linear distance (and rate).

This result can be seen as the culmination of a sequence of constructions based on
tensor product and its modifications. In 2014, Tillich and Zémor defined the first tensor
product based construction to achieve constant rate codes with distance

?
N. This was

improved (by polylog(N) factors) upon by Evra, Kaufman and Zémor ’20 and shortly
later by Kaufman and Tessler’20 by using high-dimensional expanders(HDX).

Hastings, Haah and O’Donnell introduced the idea of a “quotiented tensor product"
which utilizes the symmetry of the constituent complexes to quotient the tensor prod-
uct which leads to a boost in parameters. They constructed a code using Zl symmetry
to achieved a distance of N3/5/polylog(N). Panteleev and Kalachev’20 also used Zl-
symmetric complexes but managed to achieve an almost linear distance of N/ log N.

Breuckmann and Eberhardt’20 defined the quotiented tensor product for any group G
and conjectured that G-quotiented tensor product of expander codes based on a certain
Cayley graph Cay(G, S) (LPS graph) should yield codes of linear distance and rate. Not
much later, Panteleev and Kalachev’21 proved the conjecture resolving the problem at least
from the perspective of distance and rate.

In this work, we provide a unified exposition of these results focusing primarily on the
property of distance and decodability.

Contents

1 Preliminaries 6
1.1 Notation table . 6
1.2 Linear Codes . 6
1.3 Tanner Codes . 7
1.4 Chain Complexes . 7
1.5 CSS Codes . 8

2 A Plethora of Products 9
2.1 Tensor Product . 9

2.1.1 Hypergraph Product . 10
2.1.2 HDX Codes . 10

2.2 Symmetric tensor codes . 11
2.2.1 Group Action and Quotients . 12
2.2.2 Balanced Product . 14
2.2.3 Twisted Product . 15
2.2.4 Lifted Product . 16
2.2.5 Summary of the products . 18
2.2.6 An alternate perspective . 18

3 Structure 20

4 Distance 22
4.1 Tensor Product lower bound . 22
4.2 Upper bound . 23
4.3 The [HHO21] distance bound . 24
4.4 The [PK21] distance bound . 27

5 Decoding 29
5.1 Classical Decoding . 29
5.2 Quantum Decoding . 30
5.3 Tensor Reduction . 31
5.4 Twisted Product . 34

5.4.1 The algorithm . 34
5.4.2 The proof . 36

2

Introduction

Information is prone to corruption which necessitates the construction of error-correcting
codes that can enable computation and communication in the presence of errors. Since
the era of Shannon, classical coding theory has made great strides and we have various
constructions of error-correcting codes that are widely used in computing devices. On the
other hand, we are far from building large-scale quantum computers and one of the (many)
barriers to doing so is the lack of quantum error-correction that can enable fault-tolerant
computation. Moreover, such codes also have theoretical applications in complexity the-
ory, cryptography, pseudorandomness etc. . . (see [Tre04] for a survey). In a similar vein,
one could expect connections of quantum error-correcting codes to quantum complexity.

A priori codes are merely a set of strings but adding structure can be very useful. Clas-
sically, one of the most well-studied structured families is that of linear codes, i.e., codes that
are linear subspaces of Fn

q . If the subspace has dimension k, then it defines a [n, k, d]-code
where its distance, d, is the Hamming weight of the smallest non-zero vector in it. Var-
shamov [Var57] extended the existential bound of Gilbert [Gil52] to linear codes to show
that over Fq, [n, k, d]- linear codes exist with rate k/n ă 1´ Hq(d/n). Gallager in his PhD
thesis [Gal60] defined the notion of a low density parity check (LDPC) code as one which
has a parity check matrix with constant row and column sparsity. He showed that [Gal62]
random binary LDPC codes also attain the GV bound with high probability1.

Generalizing the GV bound, Calderbank and Shor [CS96], and Steane [Ste96], defined
CSS codes and proved that such codes exist with k/n ă 1´ 2Hq(d/n). Bravyi, Terhal and
Leemhuis [BTL10] proved that any [[n, k, d]] stabilizer code can be mapped to a [[4n, 2k, 2d]]
CSS code which preserves sparsity upto a constant factor. Thus, if we are interested in
asymptotically optimal constructions, there is no loss of generality in considering CSS
codes.

A CSS code is defined by a pair of linear codes CX, CZ such that CKZ Ď CX. Let Hx, Hz be
parity check matrices2 of CX, CZ. A family of CSS codes is LDPC if both Hx, Hz have con-
stant sparsity. The X-distance, dx, is defined as the minimum weight vector in CXzCKZ . Sim-
ilarly, one defines dz. The resulting CSS code is then a [[n, k, d]]-code where d = min(dx, dz),
and k = dim(CX)´dim(CKZ) = dim(CZ)´dim(CKX). A code is good if d, k = Θ(n). Clearly,
the quantum GV bound shows that good CSS codes exist and the question now is whether
Gallager’s result holds in the quantum setting , that is,

Does there exist an infinite family of good LDPC CSS codes?

1For a modern proof that works over any Fq, see [MRR+20].
2This means that ker(Hx) = CX and ker(Hz) = CZ

3

The best construction to date is the one by Bravyi and Hastings [BH14] who showed
that the tensor product (they termed it homological product) of two random linear codes
yields good CSS codes with weight being Θ(

?
n). As a first step, we ignore the rate and ask

if we can build codes with linear distance. This is still open but there has been significant
progress on this recently with constructions pushing the distance from

?
n all the way to

n
log n . The focus of this work is to survey and give an exposition of these works.

Given the close relation to linear codes, it is only natural that insights from construct-
ing those can be helpful to building CSS codes that achieve linear distance. This perspec-
tive is what separates these product constructions from earlier ones like surface codes, for
example–Kitaev’s toric code, which primarily use algebraic topological methods. Specifi-
cally, we see the use of two key properties (i) expansion (in [TZ14, EKZ20, KT21]) and (ii)
symmetry (in [HHO21, PK21, BE21a]).

The idea of constructing codes using graphs was proposed by Gallager in 1963 and gen-
eralized by Tanner [Tan81]. Sipser and Spielman [SS96] combined this construction with
that of expander graphs to get the first explicit family of “good" binary LDPC codes. This
led to the insight that constructing and analyzing codes using expansion-like properties of

the factor graph which is a 1-complex, CX = C1
Hx
ÝÑ C0 can be very useful. Its generalization

for a CSS code is a 2-complex C = C2
HT

z
ÝÝÑ C1

Hx
ÝÑ C0 which is a chain complex by the

orthogonality condition, i.e., HT
z Hx = 0.

Tillich and Zémor [TZ14] defined the hypergraph product of two expander-based codes
as in [SS96] yielding a constant rate CSS code with distance O(

?
n). When viewed as

1-complexes this is the same as the usual tensor product of complexes which can be per-
formed on larger complexes. This was done by Evra, Kaufman and Zémor [EKZ20] by re-
placing one of the expanders with an expanding simplicial 2-complex, i.e., high-dimensional
expander (HDX) yielding a distance of O

(a
n log n

)
. Kaufman and Tessler [KT21] showed

that one could take iterated tensor products if the base complexes had some nice proper-
ties. Using the Ramanujan complexes as in [EKZ20], they could obtain codes with distance

O(
b

n logk n) for any k. However, it can be shown that the tensor product of two codes of
sub-linear distance cannot yield a code of linear distance3. This restriction can be overcome
by utilizing symmetry.

Symmetry, that is, invariance under the action of a group, is a useful property of a
code. Such symmetries help in proving properties about the code and give rise to nat-
ural operations like quotienting that can lead to quantitative improvements by reducing
redundancy. One of the largest family of symmetric codes that are studied are cyclic or
quasi-cyclic codes which have symmetries of Zl .

Hastings, Haah and O’Donnell [HHO21] introduced the twisted product and showed
that for a suitable construction of a Zl-symmetric graph B, the twisted product of B and
the l-cycle graph yields a code with distance Θ(N3/5) upto polylogarithmic factors. Pan-
teleev and Kalachev [PK21] gave a simplified construction of a graph B with an elegant
proof that improved the bound significantly obtaining codes of distance N/ log N. The
work of Breuckmann and Eberhardt [BE21a] abstracted out the constructions to define a
generalized quotiented product for complexes symmetric under the action of any group.

3See Lemma 4.2.1 for a formal statement.

4

Moving beyond distance, we need decodable algorithms to be able to perform error-
correction. The notion of decoding of CSS codes is similar to decoding the classical codes
CX, CZ upto (co)boundaries. A decoder for the hypergraph product [TZ14] was given by
Leverrier, Tillich and, Zémor [LTZ15], based on a generalization of the iterative algorithm
of Sipser and Spielman [SS96]. Evra, Kaufman and Zémor [EKZ20] give a decoding algo-
rithm for their construction via a reduction to decoding the constituent codes. The con-
struction of Hastings, Haah and O’Donnell [HHO21] has a Z-decoding which utilizes ver-
tex expansion which only holds for the cocomplex. The constructions of [PK21, BE21a] do
not have a decoding algorithm yet.

About the document In this exposition, we will focus on the product constructions and
specifically on the results of [TZ14, EKZ20, HHO21, PK21, BE21a]. The goal of the docu-
ment is to serve as a self-contained introduction to the recent progress made in construc-
tions of quantum LDPC codes. For a broader perspective, the reader is referred to the
excellent survey by Breuckmann and Eberhardt [BE21b] which goes beyond LDPC CSS
codes and also discusses issues of practical relevance.

Chapter 1 gives basic definitions and sets up the notation. In Chapter 2, we define the
various generalizations of tensor products and state the main distance results which we
prove in Chapter 4. We prove a structural result on the (co)homology which is a general-
ization of the Künneth formula in Chapter 3 which immediately lets us compute the rate
and is also very useful in proving distance and decoding.

We begin Chapter 5 by generalizing the decoder in [EKZ20] to give a black-box decoder
for tensor product of complexes using their individual decoders. We then proceed to dis-
cuss the decoder in [HHO21]. In ??, we sketch connections to two well-studied problems
in theoretical computer science – (i) construction of explicit expanders (ii) construction of
explicit CSP gap instances.

5

Chapter 1

Preliminaries

1.1 Notation table

We summarize the key definitions here for easy reference. These will be explained in detail
in the rest of the chapter.

Notation Definition

n-complex C A chain complex of F2-vector spaces of length n
C˚ The co-complex(dual complex) of C
(C)d (C)d = Cd Ñ Cd´1 Ñ Cd´2
nj(C) dim(Cj)
rj(C) dim(Hj(C))
dj(C) mint|x| | x P ker(Bj)z im(Bj+1)u
λ(G) λ2(A) where A is the adjacency matrix

H : Fm
2 Ñ F

n
2 is(α, β)-expanding If for every x such that |x| ď αm, |Hx| ě β|x|

F2[S], for a finite set S t
ř

sPS ass | as P F2u – F
|S|
2 .

T(G, C0) Tanner code on graph G, code C0

1.2 Linear Codes

A binary linear code of blocklength n is a vector subspace of Fn
2 . The elements of this

space are called codewords. The dimension of the code is the dimension of the subspace and
its distance is the smallest Hamming weight of a non-zero codeword. A code of length n, di-
mension k and distance d is written as an [n, k, d] code. The rate of a code is the normalized
dimension, i.e., k/n and is a measure of how efficient the code is. A code is specified either
as as the kernel of a parity check matrix or as the rowspace of a generator matrix. Given a
parity check matrix H for a code C = ker(H), we associate to it a bipartite graph called the
Tanner graph. The vertices of this graph are the set of columns (called the bits) and the set of
rows (the parity checks) of H. There is an edge between row i and column j if H(i, j) = 1.
A more intuitive way to interpret the graph is that we have the bits of x P Fn

2 placed on
the vertices representing the columns. A vertex representing row j computes the jth parity
check as the sum of all neighbouring bits. Thus, x P C if and only if every parity check

6

computes to zero. The dual code of C represented as CK = ty | xx, yy = 0 @x P Cu1. The
generator matrix of CK is the parity check matrix of C. Thus, if C = ker(H), CK = Im(HT).
Here’s an example to illustrate all these terms.

Example 1.2.1. Let C = ker

1 0 0 1 0
0 1 1 1 1
0 0 1 0 1

 It is a [5, 2, 2] code as the equations are inde-

pendent and the smallest weight codeword is [0, 0, 1, 0, 1]T. It’s Tanner graph is the follow-
ing

1

2

3

4

5

x1 + x4

x2 + x3 + x4 + x5

x3 + x5

Figure 1.1: Tanner graphs of C

1.3 Tanner Codes

Let G be a d-regular graph on 2n vertices and let C be a code of length d. An ordering on G
is a collection of bijective functions tordv : [d]Ñ N(v) | v P Vuwhere N(v) denotes the set
of neighbors of v. For f : E(G)Ñ t0, 1u, and a vertex v, let f v

i denote f (v, ordv(i)). Then,

T(G, C) = span(f | (f v
1 , ¨ ¨ ¨ , f v

d) P C @v)

This defines the code as a subspace of the dual space but by a standard isomorphism, we
have T(G, C) Ď F2[E(G)]˚ – Fnd

2 .

1.4 Chain Complexes

A chain complex C over F2 is a sequence (Ci)i of F2-vector spaces and boundary maps
Bi : Ci Ñ Ci´1 such that any two consecutive maps are zero, i.e., Bi´1Bi = 0. An equivalent
way to say this is Im(Bi) Ď ker(Bi´1). We will use the phrase n-complex to specify the
length of the sequence. For a vector space V, we have its associated dual space, V˚, which
is the space of all linear functions on V. For every, map φ : V Ñ W, we have a map
φ˚ : W˚ Ñ V˚ which is given by φ˚(f)(v) = f (φ(v)) for f P W˚, v P V. Given a basis
teiu, we have an associated basis of the dual te˚i u where the function e˚i (ej) = δij is the
Kronecker delta function which is 1 when i = j and 0 otherwise. Using this basis, it is
easy to check that if the map φ is given by a matrix A, then φ˚ is given by AT. Thus, we

1Here xy, xy =
ř

i yixi where xi are the coefficients of x obtained by representing as a sum over the fixed
basis. This is not an inner product as it is overR because xx, xy = 0 if x has even Hamming weight.

7

can define the dual of a chain complex (called a cocomplex) as C˚ which has the sequence
of vector spaces (C˚n´i)i and the coboundary maps B˚i : C˚i Ñ C˚i+1. We will usually identify
Ci – C˚i using this identification2 and not mention the dual very explicitly. The ith homology
of C is defined as Hi(C) = ker(Bi)/ im(Bi+1). Similarly, the jth cohomology is defined as
H j(C) = ker(B˚j)/ im(B˚j´1). It is easy to see that H j(C) = Hn´j(C˚).

Since, distance is a notion that is sensitive to the choice of a basis, we will assume that
each Ci comes equipped with a basis3 and we will misuse notation to refer to both the
basis and the space spanned by it as Ci. Let us look at the most common examples of chain
complexes we will encounter.

Example 1.4.1 (Bipartite complex). Let H be the parity check matrix of a code C. Then,
C = F

n
2

H
ÝÑ F

m
2 is a 1-chain complex such that H1(C) = ker(H) = C. In general, for

a bipartite graph it’s adjacency matrix is of the form
[

0 A
AT 0

]
and we can build this

complex by taking A to be the boundary map. This is what we will refer to when we
mention the complex of a bipartite graph. This is well-defined upto duality, i.e., taking A
or AT.

Example 1.4.2 (Simplicial complex). Given a ground space of elements, say, [n]. A set of
subsets X Ď 2[n] defines a simplicial complex if it is downward closed, i.e., if x P X then
for any y Ď x, y P X. Let Xj = tx P X | |x| = j + 1u, i.e., the set of all subsets of size
j + 1. We build a chain complex with Cj := F2[Xj] and the maps Bj(x) =

ř

ePx (xzteu).
The, dual map is also very natural, B˚j (x) =

ř

(xY teu) where the sum is over e such that
xY teu P Xj+1. A graph G = (V, E) can be seen naturally as a simplicial 1-complex where
X0 = V, X1 = E. We will refer to the complex E Ñ V where the map is given by the edge
vertex incidence matrix, as the graph complex associated to G. 4

1.5 CSS Codes

We will focus on a particular class of quantum codes called Calderbank-Shor-Steane (CSS)
codes which were first defined by [CS96, Ste96]. These are a subset of a larger family
of codes called stabilizer codes. CSS codes are a defined by a pair of codes CX, CZ such
that CX Ď CKZ and CZ Ď CKX . This is in bijection with 2-chain complexes over F2. Let

C = C2
HT

z
ÝÝÑ C1

Hx
ÝÑ C0 be a complex which defines a CSS code where Hx, Hz are the parity

checks of CX, CZ. The parameters of the code are length - n1(C), dimension - r1(C) and
distance d = min(dX, dZ) where dX = d1(C), dZ = d1(C˚). We also require that Hx, Hz
are low-density, i.e., the weight of their rows and columns are bounded by a constant.
Analogously to linear codes, these are represented as a [[n, k, d]] or [[n, k, dX, dZ]] code.

2The choice of the dual basis is such that the isomorphism preserves Hamming distances.
3Such a complex is sometimes referred to as a based chain complex in the literature. A priori the basis is

unordered but we will impose an order in some cases, especially when dealing with Tanner codes.
4There are multiple ways of creating a complex from a graph. The earlier example itself was one where we

restricted to bipartite graphs. Another one could be via the adjacency matrix. However, these two examples
are the only ones we will use.

8

Chapter 2

A Plethora of Products

The main object we are interested in constructing and analyzing is chain complexes of
vector spaces over F2. A topological way of constructing these would be by applying
a (co)homology theory to some topological space. This has been the traditional way of
doing things especially from a physics perspective as the topology of the code matters
during implementation. One of the earliest examples of a quantum CSS code is Kitaev’s
toric code which gives the complex obtained by cellulating the torus and applying cellu-
lar homology. Apart from using the usual simplicial/cellular homology, there have been
constructions using more exotic homology theories like the Khovanov homology [Aud14].
Another approach, which has been more fruitful recently, is to start out with two or more
simple chain complexes, typically graphs or simplicial complexes, and combine them us-
ing some notion of a product. While there have been a plethora of such products, all of
them are essentially a tensor product with some modifications. In this chapter, we will try
to define and study these various products in a unified manner.

2.1 Tensor Product

Tensor product is the most canonical product of a pair of chain complexes and forms the
backbone of all the new product constructions.

Definition 2.1.1 (Tensor Product). Let C,D be chain complexes. The complex C bD is the
complex such that (CbD)k =

Àk
i=0 CibDk´i and Bk(xb y) = BCi (x)b y+(´1)ixbBDk´i(y)

if x P Ci, y P Dk´i.

Let E = C bD. Clearly, from the definition nj(E) =
řk

i=0 ni(C)nk´i(D). Now, anal-
ysis of the (co)homology of the product is standard in algebraic topology and the main
result here is the Kunneth’s formula. We will prove a more general version of this later (
Lemma 3.0.1).

Theorem 2.1.2 (Künneth). Hk(E) – ‘i Hi(C)b Hk´i(D).

The distance properties are trickier to analyze and these are computed individually for
each construction. However, we do have some general lower and upper bounds that let’s
us prove non-trivial results and equips us with general-purpose procedures.

Theorem 2.1.3. [ZP19] Let D be a 1-complex and C be any complex and E = C b D. Then,

9

dk(E) ě min(dk(C), dk´1(C)d1(D)). Moreover, if the map BD1 is surjective, then dk(E) ě
dk´1(C)d1(D).

This theorem is very useful to prove distance bounds for quantum CSS codes formed
by tensor products. Say the code is given by a short chain E2 Ñ E1 Ñ E0, dX = d1(E) and
dZ = d1(E˚). We have seen earlier that E˚ = (C bD)˚ – C˚ bD˚. Thus, all we need to do
is to apply this theorem twice, once for (C,D) and once for (C˚,D˚). We will use it in this
section and prove a general version of it in Chapter 4.

2.1.1 Hypergraph Product

The specific case when C is also a 1-complex was proved in [TZ14]. Let C be the code given
by H1(C) = ker(B1). In other words, we have B1 as the parity check matrix and the basis of
C0 are the parity check vertices. The term hypergraph refers to the one whose vertices are
the basis of C0, C1 and the hyperedges are the collection of supp(B˚1 (v)) where v is a parity
check vertex.

The main result in this paper can be obtained by applying the one-dimensional version
of this lower bound to a complex E = C b C˚.

Theorem 2.1.4. [TZ14][Theorem 1] Let A be 1-complex such that BA1 given by H P F
n´cˆn
2 is

surjective. Let, E = AbA˚. Then d1(E) ě d1(A) and d1(E˚) ě d1(A). Moreover, n1(E) =
n2 + (n´ c)2 and r1(E) = c2.

Proof. The complex is self-dual so we only need to prove it for E . As, A˚ = A˚0 Ñ A˚1 Ñ 0,
we have that H0(A˚) = A˚1 / im(B˚1). Since c ą 0, im(B˚1) ‰ A˚1 and thus, there exists some
basis vector of A˚1 that is not in the image. Thus, d0(A˚) = 1. Now we use Theorem 2.1.3
with C = A˚,D = A. Since the map B1 is surjective, we get that,

d1(E) ě d0(A˚)d1(A) = d1(A).

n1(E) = n1(A˚)n0(A) + n0(A˚)n1(A) = dim(A0)
2 + dim(A1)

2 = n2 + (n´ c)2.

r1(E) = r1(A˚)r0(A) + r0(A˚)r1(A)

= r0(A˚)r1(A) (Surjectivity implies r0(A) = 0)
= (dim(A˚1)´ dim im(B˚1))dim ker(B1)

= c2.

Taking c = Θ(n) yields a constant rate quantum LDPC code with distance growing as
O(
?

n). These are achievable by using bipartite expanders of constant degree.

2.1.2 HDX Codes

A natural way to generalize the earlier idea is to use a high-dimensional expander (HDX)
instead of an expander and this is the approach taken in a recent work of Evra, Kaufman,
and Zémor [EKZ20] which achieves a family of codes with a distance of

a

N log N.

High dimesional expanders are simplicial complexes with “expansion" properties and
there are multiple notions of expansion that are not known to be equivalent (as for graphs).

10

We will not define what they are as the only property we will need is of bounded degree
i.e. , the boundary maps Bi are all sparse.

The particular construction uses what is called the LSV Ramanujan complex which is the
generalization of the much studied LSV Ramanujan graph. Let X be the d-dimensional
Ramanujan complex and consider the clipped complex Xd = Xd Ñ Xd´1 Ñ Xd´2. It is
shown that

Theorem 2.1.5. [EKZ20, Thm 2.2] For d-dimensional LSV complexes X , we have that dj(X) =
Ω(log nj(X)) and dj(X ˚) = Ω(nj(X ˚)) for 1 ď j ď d´ 1. Moreover, rj(cX) ą 0 for j = 1, 2.

For r = 1, 2, we get, Qr = [[n, 1, O((log n)r), O(n)]]. One issue is that the X-distance
(and thus, the overall distance) is very small. This is remedied by a generic balancing
procedure of tensoring with a good classical code.

Theorem 2.1.6. [EKZ20, Thm 2.3] Let X be an 2-complex and let C be a 1-complex with a surjec-
tive boundary map. For E = Xd b C we have, d2(E) ě d1(X)d1(C) and d1(E˚) ě d1(X ˚)

Proof. The claim for E follows directly from Theorem 2.1.3 for (X , C) for using surjectivity.
For E˚, we use the theorem for (X ˚, C˚) to get get d1(E˚) ě min(d1(C˚), d0(C˚)d1(X ˚)).
Since, d1(C˚) = 8 by convention and d0(C˚) = 1, we get the claim.

Let us rewrite this in coding theory terminology as this is a useful general procedure
which is used in many constructions.

Corollary 2.1.7 (Distance balancing). Let Q be a [n, K, dx, dz] code and C be a classical code de-
fined by a surjective map with parameters [m, k, d]. Let Q1 = (Qb C)3

1. Then, Q1 has parameters
[O(nm), kK, ddX, dZ].

To get the construction in [EKZ20], we tensor Qr obtained from Theorem 2.1.6 with a clas-
sical expander code C which is a [m, O(m), O(m)] code where m = n/(log n)r. Using the
corollary, we get a quantum code with final parameters [nm, O(m), O(n), O(n)] and thus,
the distance is O(

a

N(log N)r) where N = nm = n2/(log n)r is the length of the code.

Another application of this theorem was used in [PK21] to boost the rate of the code at
the cost of the distance. This is via the following lemma.

Corollary 2.1.8 (Dimension boosting). Let Q, C be as before and let Q1 = ((Qb C)˚3 b C)3.
Then, Q1 has parameters [O(n2N), k2K, ddZ, ddX].

Proof. The dual simply switches the X, Z codes and thus flips dX and dZ. The rest is just
applying the previous corollary twice.

2.2 Symmetric tensor codes

The codes we have seen are applications of tensor product directly to expanders and
HDXs. However, there have been a set of constructions recently that perform modifica-
tions of the tensor product. They improve upon the tensor product by avoiding a direct
upper bound (see Lemma 4.2.1 and discussion thereafter). These seem different from the

1Recall that for a complex X , (X)d = Xd Ñ Xd´1 Ñ Xd´2

11

definition, but as we will show, are all equivalent, at least in the case for which useful con-
structions exist. In particular, we will look at the twisted homological product from [HHO21],
lifted product from [PK21] and balanced product from [BE21a]. We will show that each of
these are equivalent to each other in some restricted setting. This equivalence is mentioned
in [BE21a] but a complete proof is not presented. Here we will give a complete proof of
the equivalence. Each of these products work with complexes that have a symmetry i.e.,
an action of a group on it.

2.2.1 Group Action and Quotients

Definition 2.2.1 (Group Representation). A representation of a group H is a pair (ρ, V)
where V is a vector space over some fieldF and ρ is group homomorphism ρ : H Ñ GL(V)
where GL(V) is the mutiplicative group of automorphisms of V to itself. In other words if
V – Fn, ρ maps group elements to nˆ n invertible matrices(over F).

There are two main representations that we will encounter.

• Natural representation - For Sym(l), (ρnat,Fl) is defined by ρnat(σ)ei = eσ¨i where
te1, ¨ ¨ ¨ , elu is a basis of V = F

l .

• Regular representation - For any finite group group H, let R := F2[H]. The set tg | g P
Hu forms a basis of R. The left regular representation is given by ρreg(h)g = hg, while
the right variant is, ρreg(h)g = gh´1.

Definition 2.2.2 (H-action on a complex). Let C be a chain complex and H be a finite group.
The action of H is given by a collection of homomorphisms tρiu where ρi : H Ñ GL(Ci).
For x P Ci, we write2 h¨x = ρi(h)x. The key condition is that the action must be compatible
with the boundary map, i.e., g¨(Ba) = B(g¨a).

While the above definition works for any representation, we will impose the restriction
that eachρi actually maps into the set of permutation matrices3.This lets H permute the
basis elements and prohibits actions like h¨e1 = e2 + e3.

Example 2.2.3 (Action on a graph). In the case when F is a graph complex, this compatibil-
ity condition is equivalent to requiring the action to be a graph isomorphism. To see this
let e = (u, v) be an edge. For any g P H, g ¨ (Be) = g¨(u + v) = g¨u + g¨v = B(g¨e). Thus,
g¨e = (g¨u, g¨v)

Definition 2.2.4 (Quotient Complex). For a chain complex C with the action of H, define
the chain complex C/H where (C/H)i = Ci/H := Ci/xv´ h¨v |v P Ci, h P Hy.

In other words, we are shrinking orbits of every vector to a single point. Observe that
for any v P Ci, B(v´ h¨v) = Bv´ B(h¨v) = Bv´ h¨B(v) = 0 P Ci´1/H. Thus, the boundary
maps are well-defined on the quotients because of the compatibility.

To do this, we focus on a nice class of actions called free actions.

Definition 2.2.5 (Free action). An action is called free if for any i and any basis v P Ci,
h¨v = v, then h = e.

2Note that we overload notation to similarly represent the action irrespective of the space Ci.
3This forces ρi = ρnat ˝ ρ1i where ρ1i : H Ñ Sym(dim(Ci)).

12

We will first show that the action reduces to a collection of regular representations and
we thus get the structure of V/H. We will then observe the structure of the quotiented
boundary maps.

Lemma 2.2.6. Let H act on a complex C such that the action on each Ci is free. Then for each i,

i) Ci – Ci/H bF2[H].

ii) The action decomposes as ρi(h) = I b ρreg(h).

iii) The boundary maps Bi : Ci Ñ Ci´1 are of the form B1i b ρreg(si) where B1i : Ci/H Ñ Ci´1/H.

Proof. Let x be any element. Then h¨x = g¨x implies that (g´1h)¨x = x. Since, the action is
free, we get that g = h. Thus, the orbit of x i.e. th¨x | h P Hu has size |H|. This also means
that dimension of Ci/H = dim Ci/|H|. Let b be one of the basis vectors of Ci/H. Since, the
orbit of b (when considered an element of V) has size |H| we have distinct basis vectors
bb h := h¨b. Now, g¨(bb h) = g(h¨b) = bb gh. Thus, the action is identity on the first
component and regular on the second. Moreover, if Bi(vb e) =

ř

w(wb si(v, w)), si(v, w) P
H then for any h P H,

Bi(vb h) = Bi (h¨(vb e)) = hB(vb e) =
ÿ

w
(wb hsi(v, w)).

Thus, if we order the basis of Ci in a lex order, then the matrix of Bi has ρreg(si(v, w)) in the
block (v, w). Thus, we define B1i(v) =

ř

w gww, and the claim follows.

Definition 2.2.7 (Signed matrices). Let H be a finite group and let R = F2[H]. We call any
matrix over R4 a signed matrix.

Definition 2.2.8 (Lifted matrix). Let R = F2[H] and let X =
ř

i,j xijEij be a signed matrix
with xij P R. Given a representation (ρ, V) over F2 of H we can define the lifted matrix
ρ(X) =

ř

i,j Eij b ρ(xij).

Using the property ρ(gh) = ρ(g)ρ(h), one can show that ρ(XY) = ρ(X)ρ(Y).

Constructing graphs with free actions - Lifting

Let G = (V, E) be an undirected graph with an ordering on V such that by convention we
have (u, v) P E if u ď v. Let H be a subgroup of Sym(l).

Definition 2.2.9 ((H, l)-lift of a graph). An (H, `)-labelling of an undirected graph G =
(V, E) is a function s : E Ñ H Ď Sym(l). The lifted graph G(s) = (V1, E1) is a graph
on l copies of the vertices V1 = V ˆ [l] where for every edge (u, v) P E we have an edge
between (u, i) and (v, s(u, v)¨i) in E1.

Note that if a graph is a (H, l)-lift of a smaller graph then it has a natural action of H on
the vertices h¨(u, i) = (u, h¨i). This extends to an action on edges when H is commutative.
as e1 = ((u, i), (v, s(e)i)) be an edge. Then h must act as

h¨e1 = ((u, h¨i), (v, h¨s(e)i)) = ((u, h¨i), (v, s(e)(h¨i))) P E1.

4We now view R as a ring by defining the multiplication operation using the group multiplication of H. R
is called the group algebra of H

13

Example 2.2.10 (Graph lifting). Let AG be the adjacency matrix of G. Given an (H, l)- la-
belling, we define its signed adjacency matrix which is obtained replacing 1 with s(u, v) in
the (u, v)th entry of the adjacency matrix.

AG(s) =
ÿ

(u,v)PE(G)

s(u, v)Eu,v

where Eu,v is a matrix with the only non-zero value being in (u, v)th entry with the value 1.
It is easy to see that the adjacency matrix of the lifted graph, G(s), is AG(s) = ρnat(AG(s)).

We now prove that a free action on a graph induces one on any Tanner construction.
Let G be a d-regular graph. If the graph has a group H acting on it, we define the notion of
H-ordering which is an ordering 5 such that for every v, h, i, we have ordhv(i) = h ¨ ordv(i).

Lemma 2.2.11. If we have a free action of H on L along with an H-ordering, then for any C0, the
graph T(L, C0) has a free H-action.

Proof. T(L, C0) is a bipartite graph with vertices on the left being indexed by edges of L
and on the other side by (v, q) where v is a vertex of L and q denotes one of the constraints
of the code C0.

The action of h is very natural as h((v, q)) := (h(v), q) and the action of h on the left
vertex marked by e = (v, v1) is same as its action on L i.e h(e) = (h(v), h(v1)). This is a
valid vertex in T(L, C0) as action of h is a graph homomorphism (on L).

If the edge (v, v1) participates in the qth constraint then, it means that ordv(k) = v1 for
some k which lies in the support of the constraint. Since the ordering is an H-ordering,
ordhv(k) = h(v1) and thus, the edge (hv, hv1) = h(v, v1) participates in the qth constraint at
h(v). Thus, (hv, q) „ h(v, v1) is a valid edge in T(L, C0). Hence, it is a graph homomor-
phism.

Since the action of h is free on L, it is so on the vertices of T(L, C0). Moreover, the
homomorphsims respect the bipartiteness and therefore the action on edges is free as well
(a switch cannot happen).

2.2.2 Balanced Product

With all the group action terminology in place, we can quite easily define the balanced
product introduced in [BE21a]. Let C,D be two complexes with an action of H. Technically
we require the action to be a left action on C and a right action on D but we will focus on
the case when H is commutative and thus this won’t matter. Define Ci b Dj/H := Ci b

Dj/xh¨vbw´ vb h¨wy. This is a direct generalization of the previous definition of quotient
as we can consider Ci/H = Ci bF2/H with the action of H on F2 being trivial. Now, we
define C bH D as just the usual tensor product but replace each Ci bDj by Ci bDj/H. It is

5Recall that an ordering is a collection of bijective functions tordv : [d]Ñ N(v) | v P Vu

14

the same check as we did for Ci/H to see that the boundary maps are well-defined.

B(h¨vbw) = B(hv)bw + vb B(w)

= hB(v)bw + hvb B(w) By compatibility of action
= B(v)b h¨w + vb hB(w) By quotient on target space
= B(v)b h¨w + vb B(h¨w) By compatibility of action
= B(vb h¨w)

2.2.3 Twisted Product

The twisted product defined in [HHO21] draws its inspiration from the notion of fiber
bundles in differential geometry and hence the name. We can however define it directly at
the level of chain complexes without worrying about the topology. To do this, we require
a setup in which we have chain complexes B,F and a group H that acts on F .

The twist map ϕ is a function that maps the set E = t(b, a) | a P supp(Bb) b P B1, a P B0u

to H. If B is the bipartite graph corresponding to the 1-complex B, then the set E is the set
of edges of B. Note that this is the same as a labeling of the graph.

With this setup in place, we define the twisted product B bϕ F as follows. The spaces
are the same as that in the usual tensor product but the boundary maps are twisted.

The map from BiF1 Ñ BiF0 is untwisted i.e. it is just idb BF and the map from B1Fi Ñ

B0Fi is twisted. Let f be a basis element of Fi. Then the map would be B(bb f) =
ř

aPBb ab
(ϕ(b, a) ¨ f).

Putting this together for instance we have B2 : B1F1 Ñ B1F0 ‘ B0F1, defined by B2(bb
f) = bb B(f) +

ř

aPBb ab (ϕ(b, a) ¨ f). We can similarly write down B1. Note that when
the map ϕ is trivial, i.e. everything is mapped to the identity, then this map becomes the
usual boundary map for the tensor product. In this sense, it generalizes the tensor product.
However, the definition given above only works when B is a 1-complex.

Lemma 2.2.12. [HHO21, Prop. 2.2] The above definition defines a complex i.e. B1B2 = 0

Proof. Let b, f be basis elements of B1, F1.

B1B2(bb f) = B1 (bb B(f)) + B1

(
ÿ

aPBb

ab (ϕ(b, a) ¨ f)

)

=
ÿ

aPBb

ab (ϕ(b, a) ¨ B(f)) +

(
ÿ

aPBb

ab B (ϕ(b, a) ¨ f)

)
=

ÿ

aPBb

ab (ϕ(b, a) ¨ B(f) + B (ϕ(b, a) ¨ f))

=
ÿ

aPBb

ab 0

where the last step is due to the compatibility of the action of H on F .

Let B(ϕ) denote the lifted 1-complex using the twist map ϕ as its labelling. Explicitly,
the lifted complex has the space B(ϕ)i = Bi ˆ H and the map Bi(b, h) =

ř

aPBb(a, ϕ(b, a)h).

15

Lemma 2.2.13. The map η : BiFj Ñ B(ϕ)iFj/H defined as η(bb f) = (b, e)b f is an isomor-
phism of complexes. That is, B bϕ F – (B(ϕ)bF)/H.

Proof. On each space, we can define η´1((b, h)b f) = bb h f . Clearly η´1η is the identity.
Now, the basis of B(ϕ)iFj before quotienting consists of (b, h)b f but we see that (b, h) =
h¨(b, e) and thus (b, h)b f = h(b, e)b f = (b, e)b h f where the last equality comes from
the quotient. Thus, elements of the form ((b, e)b f) can be taken as basis for B(ϕ)iFj/H
for which ηη´1((b, e)b f) = ((b, e)b f).

To check commutativity, we need to check the following diagram,

bb f bb B f +
ř

aPBb ab ϕ(b, a) f

(b, e)b f (b, e)b B f + B(b, e)b f

B

η η

B1

The first summand is equal by definition.

B(b, e)b f =
ÿ

aPBb

(a, ϕ(b, a))b f By definition of lift

=
ÿ

aPBb

(a, e)b ϕ(b, a) f By identification in quotient

= η(
ÿ

aPBb

ab ϕ(b, a) f)

Thus, the squares commute.

2.2.4 Lifted Product

Let C, D be two graphs each with an edge-labeling from a subgroup H. Their signed adja-
cency matrices C = C1 Ñ C0 represents a map M : Rn1 Ñ Rn0 where R = F2[H].

For a vector space V – Rn, we denote by ρreg(V) := V bF2 R – F
n|H|
2 . To see this

isomorphism, observe that v b r = (
ř

i piei) b r =
ř

i ei b pir. Expressing pir P R as a
linear sum over H we get

ř

i eib pir =
ř

i eib (
ř

h ai
hh). Thus, teib h | i P [n], h P Hu forms

a basis.

Now, we can define ρreg(C) as the complex where each space Ci is replaced by ρreg(Ci)
and the boundary maps are ρreg(Bi). The dimensions match and thus the boundary maps
make sense. Also, as ρreg is a representation, ρreg(Bi´1)ρreg(Bi) = ρreg(Bi´1Bi) = ρreg(0) = 0
so we do get a chain complex.

We define the lifted product as follows. First we form the tensor product of the cor-
responding chain complexes which are now spaces over R. The definition of the product
is identical to the F2-case and it produces a chain complex as long as R is element-wise

16

commutative, i.e. H is commutative. We denote tensor products over any ring R as bR.
The lifted product can then be stated succinctly as LP(C,D) := B(C/H bR D/H).

Theorem 2.2.14. Let C,D be 1-complexes with a free action of an abelian group H. Then,

LP(C,D) = ρreg(C/H bF2[H] D/H) – C/H bϕ D – (C bD)/H.

Proof. We will show the first isomorphism, i.e., the one between lifted and twisted product.
The second one was already shown in Lemma 2.2.13.

Now, by definition,

ρreg(C/H bF2[H] D/H)j = (C/H bF2[H] D/H)j bF2[H]

= (C/H bF2 D/H)j bF2[H] By definition

= C/H b (D/H)j bF2[H])

– C/H bDj Using Lemma 2.2.6.

Thus, if νj : (D/H)j bF2[H] Ñ Dj is the isomorphism from Lemma 2.2.6 we have our
isomorphism as ηi : ‘jďi idC/H bνj.

To check commutativity, we restrict to (C/H)i´jbDj and check the following diagram,

cb db e cb ρreg(B1jdb e) + ρreg(B1i´jcb db e)

cb νi(db e) cb Bj (νi(db e)) + Bi´jcb νi´1(db e)

B1i

ηi ηi´1

Bi

The first term is equal by Lemma 2.2.6 as,

ηi´1(cb ρreg(B
1db e)) = cb νj´1(ρreg(B

1
jdb e) Definition of ηi´1

= cb νi´1(Bj(db e)) By claim iii) of Lemma 2.2.6

= Bνi(db e) ν is a morphism of complexes

For the second one,

ηi´1ρreg(B
1
i´jcb db e) = ηi´1ρreg

(
ÿ

aPBc

ϕ(c, a)ab db e

)
By definition of lift

= ηi´1

(
ÿ

aPBc

ab db ρreg(ϕ(c, a))e

)
As the tensor is over F2[H]

=
ÿ

aPBc

ab νi (db ϕ(c, a)) By definition

=
ÿ

aPBc

ab ϕ(c, a)νi(db e) Isomorphism and the action

= Bi (cb νi(db e)) Definition of twisted product

Thus, the square commutes.

17

2.2.5 Summary of the products

Product Conditions Definition

Lifted Product Both are 1-complexes with free action of
abelian H.

ρreg(C/H bF2[H] D/H)

Twisted Product C is a 1-complex with a free action of H.
D has any action of H.

(C bD)/H

Balanced Product C,D both have any action of H. (C bD)/H

Construction of [HHO21]

Construct a set |B1| of size n and B0 of size m = 3n/4. For every a P B0, pick we have an
edge (b, a) for b P B1 with probability ∆/n where ∆ = Θ(log2 n). Divide B0 into Θ(log n)
buckets of equal size and for bucket j, sample ϕj uniformly from t0, ¨ ¨ ¨ ,

?
l ´ 1u where

l = Θ(n) is odd. Construct the twist map by having ϕ(b, a) = 0 with probability 1/2 and
ϕ(b, a) = ϕj with probability 1/2 if a belongs to jth bucket. The final code is Bbϕ F where
F : Zl Ñ Zl is the graph complex of the cycle on l vertices.

Construction of [PK21]

Take a d-regular expander G on 2n vertices and pick a “good" code C0
6. Construct a ran-

dom Zl-lift of G with l = 2n ´ 1. Here, a random lift means that for each e P E(G), s(e) is
chosen uniformly at random from Zl . Since, Zl is abelian, G(s) has a free action of Zl and
by Lemma 2.2.11, so does B := T(G(s), C0). Let F be the graph complex associated to the
cycle graph on l-vertices. Then, the natural action of Zl on F is free if l is odd. The final
code is given by LP(B,F) = ρreg(B/H bF2[Zl] F/H).

2.2.6 An alternate perspective

We can view all these three products also as lifts in a slightly different way without speak-
ing much about group actions. This viewpoint is similar to defining the tensor product as
a hypergraph product of the Tanner graph as in [TZ14].

Let B,F both denote 1-complexes with labellings sB , sF on the bipartite graph asso-
ciated to the boundary maps. Let B̂, F̂ denote the lifted complex i.e. we lift the bipartite
graph and consider the boundary map corresponding to that. The tensor product B b F
can be represented as a layered graph with the first layer corresponding to B1ˆ F1, the sec-
ond layer corresponding to B1 ˆ F0 Y B0 ˆ F1 and the final layer corresponding to B0 ˆ F0.

Lifted Product can be seen as taking a tensor B bF and then lifting it to ˆB bF . Here,
the the signing of the edges from B1F0 Ñ B0F0 and B1F1 Ñ B0F1 are the ones from the
edges of B whereas those on the edges from B0F1 Ñ B0F0 and B1F1 Ñ B1F0 are the ones
from the edges of F . The twisted tensor product on the other hand is B b F̂ and the
balanced product is E where Ê = B̂ bF where we have the equivalence [(u, h), (v, g)] „
[(u, e), (v, gh´1)]

6The good property is that it is a code at the Gilbert-Varshamov (GV) bound and has constant fractional
rate and distance.

18

b1 f1

...

bn fp

b1g1

...

bngr

a1 f1

...

am fp

a1g1

...

amgr

sF(f1, g1)

sB (b1 , a1)

sF(f p, gr)

sB (bn , am)

sB (b1 , a1)

sB (bn , am)

s F
(f 1,

g 1)

s F
(f p,

g r)

Figure 2.1: Tensor Product of the Tanner graphs

19

Chapter 3

Structure

Now that we have seen a bunch of constructions, it is time to analyze these codes in detail.
The first step in understanding such a linear code will be to compute its dimension i.e. its
rate. Since the constructions are algebraic and structured, we will be able to decompose
the code i.e. the (co)homology in terms of its constituent parts. This will not only let use
compute the dimension easily but will be of much help later when we wish to bound the
distance and decode these codes. In particular, we will be proving a general version of
Künneth formula which applies not just to the usual tensor product but also to the much
more general balanced product.

Künneth formula for twisted product

We will first state this for the case of the twisted product. We treat this case separately for
two reasons : one, that is good in the sense that the theorem is unchanged from the tensor
case, and two, we will be using this later for decoding. An elementary proof of this is given
in [HHO21, Prop. 2.1] while a cleaner and more general version is in [BE21a]. We present
the latter with some added explanations.

Lemma 3.0.1. [HHO21, BE21a] Let E = B bϕ F and let H0(F), H1(F) have representatives
such that ϕ acts by identity on these. Then, H1(E) – H1(B)H0(F)‘ H0(B)H1(F)

Proof. The assumption on the twists means that we have H0(F) = spant[vi]u such that
φ(b, a)vi = vi for every a, b, i. Similarly, H1(F) = spant[ui]u.

Let y P H1(E) and suppose y =
ř

b bb gb +
ř

a ab fa P E1. Express gb = B(fb) + zb
where zb P spantviu. Then,

y1 = y + B

(
ÿ

b

bb fb

)
=

ÿ

b

bb (gb + B fb) +
ÿ

a
ab fa +

ÿ

b

ÿ

aPBb

ab ϕ(b, a) fb

=
ÿ

b

bb zb +
ÿ

a
ab f 1a

20

Now,

B(y) = B(y1) =
ÿ

b

B (bb zb) +
ÿ

a
ab B(f 1a)

=
ÿ

b

ÿ

aPBb

ab ϕ(b, a)zb +
ÿ

a
ab B(f 1a)

=
ÿ

b

ÿ

aPBb

ab zb +
ÿ

a
ab B(f 1a)

=
ÿ

b

Bbb zb +
ÿ

a
ab B(f 1a)

Since, y P ker(B1) the final expression must be zero. However, B(f 1a) P im(B1) whereas zb
by definition is not in the image. Therefore, they can’t cancel each other. So, for each a,
B(f 1a) = 0 i.e. f 1a P H1(F). If a P im(BB1) i.e a = B(wb) then,

y + B(wb b f 1a) = y + wb b B(f 1a) + B(wb)b f 1a = y + ab f 1a.

Here we used that f 1a P H1(F) is unaffected by twists. Hence, we can erase such terms
from y. and the a that are left belong to H0(B). Thus, the second term is in H0(B)H1(F).

We rewrite the first term by writing each zb in terms of vi’s. We get
ř

i bi b vi and
applying the map we get that

ř

i B(bi)b vi = 0 and thus bi P H1(B). Therefore, the first
term lies in H1(B)H0(F).

While the notion of the homology is enough for us to compute rate, it is unhelpful
in computing distance which (unlike rate) is not invariant under isomorphism. Thus, we
write the following corollary for later use.

Corollary 3.0.2. Fix any set of linearly independent representatives of Hi(B), Hi(F) for i P t0, 1u
such that the representatives for Hi(F) are invariant under the set of twists ϕ. Then, ker(BE1) =
tx1 b y0 + x0 b y1 + im(z)u where xi (resp. yi) range over the linear span of the representatives
of Hi(B) (resp. Hi(F)) and v is a non-trivial kernel vector iff when written in the above way
x1 b y0 + x0 b y1 ‰ 0

21

Chapter 4

Distance

This section gets into the trickiest property to analyze for these constructions, i.e., distance.
We will first show how to lower bound distance in terms of the distance of the constituent
parts. We will prove the result as in [ZP19] but the proof will be much simpler as a result of
the structure from Künneth theorem. We will then look at an upper bound for the distance
which displays the limitation of the tensor product. This will also shed light on how twists
can circumvent the upper bound which leads us to the results of [HHO21, PK21] which
prove better bonds by leveraging twists and also imposing expansion like properties on
these which are very much inspired from classical coding theory.

4.1 Tensor Product lower bound

Let B,F be 1-complexes1and let E = B b F . Let B11 Ď B1 be a subspace such that B11
is spanned by a subset of the basis of B1. Define the complex B1 : B11 Ñ B0 where the
boundary map is the restriction of B1(B). Similarly define F 1. Then, E 1 = B1 b F 1 is
well-defined. In other words, we are selecting a subset of columns from the matrices of
the maps BB1 , BF1 and then forming the tensor product. It is direct to see that the complex
is a subcomplex of E i.e the natural inclusion maps E1i Ñ Ei which commutes with the
boundary maps.

Theorem 4.1.1. [ZP19] Let B,F be 1-complexes and let E = B bF . Then,

d1(E) ě min(d1(B)d0(F), d0(B)d1(F)).

Proof. Let v be a kernel vector such that |v| ă min(d1(B)d0(F), d0(B)d1(F)) and let v =
ř

b bb gb +
ř

a ab fa.

Assume now that neither of the zero homologies are trivial i.e. d0(B) = d0(F) = 1 2.
Let I = tb | gb ‰ 0u, J =

Ť

a supp(fa). then, by the weight assumption on v, we have that
|I| ď d1(B), |J| ď d1(F). Let B11 = span I, F11 = span J. Thus, H1(B1) = H1(F 1) = 0
which from Künneth’s theorem implies that H1(E 1) = 0.

1We just do this for ease of notation but none of the arguments need B to be a one-complex. To analyze
dp(E) we only need the 1- complex B1 : Bp Ñ Bp´1

2Note that either H0(B) = 0 and thus d0(B) = 8 or there is some basis element not in the image and thus
d0(B) = 1

22

We modify the construction if we have surjective maps, i.e. (H0 = 0). Both cannot be
zero else the tensor code is trivial . Since the argument is symmetric, let’s assume d0(B) =
8 i.e. H0(B) = 0. We take F11 = F1 and take B11 as above and add more basis elements such
that the restricted map becomes surjective again i.e. H0(B1) = 0 without adding a kernel
vector. This is possible as we are essentially taking a subset of columns and adding the
linearly independent ones. This ensures that H1(E 1) = H1(B1)H0(F)‘ H0(B1)H1(F) = 0.

By construction v P E 1 and moreover is in ker(BE
1

1). But since H1(E 1) = 0, we have that
v P im(BE

1

2) Ď im(BE2). This shows that v is a boundary element.

This proof does not generalize to twisted product because F11 need not be closed under
the action of the automorphism group of F1. If we do have that F11 is indeed closed, then
the argument goes through. As discussed above, if H0(B) = 0, then the above observation
gives the following corollary.

Corollary 4.1.2. Let B,F be 1-complexes and let E = B bϕ F . If H0(B) = 0, then, d1(E) ě
d1(B).

This setting is important because, as we’ve seen, the construction in both [EKZ20] and
[HHO21] have that H0(B) = 0. This can always be done by shrinking B0 to the image i.e.
B10 := im(B1). However, the bound above isn’t sufficient unless dim(Fi) is tiny compared
to B and even then, the construction is good only on side as the other distance would
depend on d1(F˚). 3

To go beyond
?

n, we want something like d1(E) ě d1(B)d1(F)c for some constant
c . We will see below that the usual (untwisted) tensor product cannot achieve that and
this is where the importance of twists comes in. While we do not have generic bounds
yet, for the specific case of the cycle map, F : Zl Ñ Zl , and clever choices of the twists,
[HHO21] prove a bound of roughly O(d1(B)

?
l) and [PK21] prove an optimal linear bound

of O(min(d1(B), d0(B)l).

4.2 Upper bound

Lemma 4.2.1. [ZP19] Let E = C bD. Then, dk(E) ď mini di(C)dk´i(D).

Proof. The construction is very simple. Let j be the argmin of the above quantity and let
x P Cj, y P Dk´j be such that |x| = dj(C) |y| = dk´j(D). Now, xb y P Hj(C)Hk´j(D). Pick
x, y to be representatives of Hj(C), Hk´j(D) and extend it to a complete set arbitrarily. By
Corollary 3.0.2 of Künneth’s theorem, xb y is a non-trivial kernel vector and thus clearly,
dk(E) ď |xb y| = dj(C)dk´j(D).

Now we can see why this upper bound breaks down for the twisted products. Most of
the argument still honds and so does the generalized Künneth but we can’t choose a rep-
resentative of Hi(F) arbitrarily as they must be invariant under ϕ. In the untwisted case,
all twists are identity and thus this condition is trivial but in general it is not. For exam-
ple, when F = Zl Ñ Zl then the only vector invariant under a permutation is the all-ones
eigenvector. Therefore, while di(F) = 1, the only invariant representative is 1i which has a

3This is why in the hypergraph product construction [TZ14], one takes F = B˚ so that the code is sym-
metric and this assumption is true on both sides giving a

?
n-distance.

23

large weight i.e., l. Thus, the bound merely gives an upper bound of l ¨min (d1(B), d0(B)).
The bound isn’t weak as this is actually achieved (upto constant factors) by [PK21].

Let us analyze in a more detailed way where the upper bound discussed above comes
from in the untwisted case and how that barrier can be crossed.

We start with v P H1(B) and g P H0(F). We can assume that |g| = 1 i.e. g is a basis
vector. In the untwisted case, v b g P H1(E) and thus we have a non-trivial element of
weight d1(B). This no longer holds in the twisted case.

B(vb g) =
ÿ

bPv

ÿ

aPB(b)

ab ϕ(b, a)g (4.1)

=
ÿ

a

ÿ

bPvXaPB(b)

ϕ(b, a)g (4.2)

=
ÿ

a
BF1 (fa) = B

E
1

(
ÿ

a
ab fa

)
(4.3)

The last line follows because v is a kernel vector and so for every a the vector ga :=
ř

bPvXaPB(b) ϕ(b, a)g P F0 has even weight. Thus, we have a preimage, fa P F1. This says
that v b g +

ř

a a b fa is in a non-trivial kernel vector where we can think of the second
term as a “correction" term which is non-zero in the twisted case.

If every twist is identity, ga =
ř

g = 0 and we recover our earlier observation. Assume
that every twist is small, say, ϕ : E Ñ t0, 1, ¨ ¨ ¨ , ru. Then | fa| ď r and thus, d1(E) ď
d1(B) + rn0(B).

Proof strategy of PK and HHO Generalizing the example above, we can say that for any
h P B1F0 such that h + v P ker(BE1), there is a unique such low-weight v which depends
solely on Bh. Both the proofs have two main parts.

1. (Expansion) Both use expansion, albeit in different forms, to argue that if |h| is too
small, then, |Bh| = Ω(|h|).

2. (Structure) HHO uses structural constraints on twists to show that |v| = Ω̃(
?

l|Bh|)
whereas PK uses the inherent symmetry of Zl to argue that |v| = Ω(l|Bh|).

4.3 The [HHO21] distance bound

We start our analysis by observing that the specific design choices of the twists in [HHO21]
are quite natural once we look at the expression for ga in Eq. (4.2). As analyzing the sum
can be cumbersome, we make some intuitive simplifications -

• For each a, limit the number of tϕ(b, a) | b P BT(a)u. The extreme case is that we just
have one twist but in that case ga = 0. The next best thing is to have just two twists.
One being identity and the other being non-trivial.

• Observe that if every twist was a multiple of k, then the support of ga has points
spaced apart by a multiple of k and thus if ga ‰ 0, then | fa| ě k.

24

• These are exactly the two simplifications made, whereby in the second one, k is taken
to be

?
l.

• [HHO21] actually goes a bit further and reduces the number of twists by partitioning
B0 into k = Θ(log n) equal-sized buckets and having the same non-trivial twist for
each a in that bucket.

Now that we have motivated the twist design in [HHO21], let’s move beyond this one
example to more general cases. Let h =

ř

b b b gb P B1F0 be the horizontal component
of the smallest non-trivial kernel vector. The first thing we notice is that the second point
above no longer holds. Indeed if we have some gb with its support spaced apart by 1,
then ϕgb also has the same. This can be remedied if we can ensure that for every b we
have supp(gb) Ď t0,

?
l, 2
?

l, ¨ ¨ ¨ l ´
?

lu. This seems like a serious restriction but one of
the most interesting aspects of the proof is that this is without loss of generality. Such a gb

ensures that each ga is also similarly supported and thus, | fa| ě
|ga|

2

?
l as the shortest chain

between any two points has length that is a multiple of
?

l. Therefore, |v| ě
?

l
2 |Bh| which

establishes part (2).

Lemma 4.3.1. [HHO21, Lemma 3.10] Consider all chains h =
ř

b bb gb such that |h|B ě d1(B)
and supp(gb) Ď t0,

?
l, 2
?

l, ¨ ¨ ¨ l ´
?

lu. Then, d1(E) ě minh |h|+
?

l
2 |Bh|4.

The condition on |h| is because h+ v = zb10 + B(x) with z P H1(B) from our structure
of the kernel. Note that we use the fact that H0(B) = 0. Since, B(x) =

ř

b bb yb with |yb|

being even, it cannot cancel out the support of z and thus, |h| ě |z| ě d1(B).

This handles the part(2) of the proof and now we focus on the first one.

Lemma 4.3.2. Let h be as above such |h| ă c n1(B)
?

l
∆ , then |Bh| ą 2 c

∆ |h|.

Theorem 4.3.3. Let E = B b ϕF be the construction as in [HHO21]. Then,

d1(E) ě Ω(d1(B)
?

l, d1(E˚) ě Ω(d1(B)).

Proof. Either |h| ą c n1(B)
?

l
∆ or from Lemma 4.3.2,

?
l

2
|Bh| ě

c
∆

?
l|h| ě

c
∆

?
ld1(B).

In either case, we are done by Lemma 4.3.1. For the distance of the dual, we have surjec-
tivity of the boundary map and thus use Corollary 4.1.2.

In the rest of this subsection will sketch the proof of Lemma 4.3.2. We start by rewriting
h =

ř

bbgb =
řl

i=1 wi b i . This is just expressing h in the basis of F0. The above lemma
says that for every i not a multiple of

?
l, we can assume that wi = 0. Thus, we relabel and

write h =
ř

?
l´1

k=0 wk
?

l b k
?

l =:
ř

?
l´1

i=0 wi b i and so, wi actually denotes wi
?

l from now on.

The image, B(h) P B0F0, can be written as
ř

ui b i. Since every twist is a multiple of
?

l,
ϕgb is supported on multiples of

?
l and therefore we can similarly write Bh =

ř

?
l´1

i=0 uib i

4This is a slight variant of the version n the paper as they have minh |h| +
?

l|Bh|sw where |Bh|sw is the
weight of the projection of h to B0. Since, |Bh| ě 2|Bh|sw, the version we state is stronger.

25

where ui =
ř

a ci,aa. Let tτ1, ¨ ¨ ¨ , τku represent the k buckets and let ϕj be the non-trivial
map of jth bucket. For every a P τj, ϕ(b, a) P tid, ϕju. We can write the expression for ci,a
very explicitly as:

ci,a =
ÿ

bPBT a

(gb)ϕ´1(b,a)i =
ÿ

ϕ(b,a)=id

(gb)i +
ÿ

ϕ(b,a)=ϕj

(gb)ϕ´1
j i

Thus for each a P τj, ci,a only depends on the two vectors. wi, wϕ´1
j i. On the other hand,

each wi influences only ci,a or cϕji,a. Let f (i, j) :=
ř

aPτj
ci,a and g(i, j) := |wi| + |wϕ´1

j i|.

Then, the final goal is to show that

|Bh| ě
2c
∆
|h|

ÿ

i

ÿ

a
ci,a ě

2c
∆
|wi|

ÿ

i

ÿ

jP[k]

ÿ

aPτj

ci,a ě
2c
∆

1
2k

ÿ

jP[k]

(
|wi|+ |wϕ´1

j i|

)
ÿ

i

ÿ

jP[k]

f (i, j) ě
c

k∆

ÿ

i

ÿ

jP[k]

g(i, j)

This relationship is very naturally modeled on a graph on
?

l vertices indexed by i and
we have an edge (i, ϕj(i))for every j P [k]. This is called the twist graph in the paper and
is equivalent to the Cayley graph on Z?l with the set of twists tϕju being the generators.
Each term in the above inequality corresponds to an edge in the twist graph

Since, the proof uses the fact that this graph is an expander, we are forced to have
at least O(log

?
l) = θ(log n) buckets and this explains yet another of their construction

parameters.

We will term a vector w P B1 light if |w| ď 2|B1|
∆ , medium if 2|B1|

∆ ď |w| ď 4|B1|
∆ and

heavy otherwise. We say that a vertex i in the graph is light,medium or heavy if wi is
light,medium or heavy.

The proof proceeds by proving that each of these statements is true with large proba-
bility.

1. (Both vectors not heavy) If |wi|, |wϕ´1
j i| ď

4|B1|
∆ , then, f (i, j) ě 0.01

k∆ g(i, j)

2. Let H, M be the set of heavy and medium vertices respectively. Then, if |H| ă
0.001|M|, one can just ignore the heavy vertices and the above lemma suffices. Else,
by expander mixing lemma, most of neighours of a heavy vertex are light. Now we
we need the next lemma.

3. One vector heavy and other light. Let |wi| ą
4|B1|

∆ . Let S Ď [k] such that |S| ą 0.98k
and for every j P S, each of |wϕ´1

j i|, |wϕji| is light. Then,
ř

jPS f (i, j) + f (ϕj(i), j) ě

0.01|B1|

26

4.4 The [PK21] distance bound

We have seen in Theorem 2.2.14 that the twisted product construction of [HHO21] is equiv-
alent to the lifted product when the group acting is abelian. Both these constructions have
currently been analyzed in the case when the group is Zl but these constructions (and their
proofs) are quite different.

The only assumption on the twists in [PK21] is that the lifted graph is expanding i.e.
the second largest eigenvalue is bounded by εd. This makes it quite easy to prove part (1)
i.e. the expansion part of the proof.

Lemma 4.4.1. [PK21, Lemma 3] Let G be a d-regular graph, s : E(G)Ñ Zl be a labelling such that
λ(G(s)) ă εd. Let C0 Ď F

d
2 be a linear code such that d(C0), d(CK0) ě εd. Let B = T(G(s), C0),

F : Zl Ñ Zl and E = B bZl F . Then, there exists constants α, β depending on (ε, d, λ) such that

• For any h P B1F0 such that |h| ď αln, |BEh| ě β|h|.

• For any h P B0F1 such that |h| ď αln, |B˚Eh| ě β|h|.

The above lemma is easy to prove using the expander mixing lemma and we therefore,
omit its proof. Now, we focus on the structure part of the argument to show that |v| ě
Ω(l|Bh|). Clearly, |v| ě |Bh|

2 ě
β|h|

2 but this does not suffice when |h| is too small. The trick
is to work with a modified vector, say h1, which has a larger weight but |Bh1| ď c|Bh|.

By the extension of Künneth’s formula to twisted products, Lemma 3.0.1, we get,

z = xb 10 + yb 11 + B(
ÿ

b

bb fb) where x P H1(B), y P H0(B).

In the HHO construction, we could assume that H0(B) = 0 and thus, for z to be non-trivial,
x ‰ 0. But here, that is no longer the case and we will have two consider both cases.

In this section, we write the group Zl multiplicatively being generated by γ. The cor-
respondence is thus, γr Ø r and γl = γ0 = id. Recalling the definition, F1 – F0 =
F2[e0, ¨ ¨ ¨ , el´1] . We denote by ι : F1 Ñ F0, the map ι(ei) = ei. Clearly, |ι(f)| = | f | for any
f P F1. It also follows from the definition of the map that B(f) = (1 + γ)ι(f). This simple
re-characterization of the map will be very helpful for norm computations5.

Lemma 4.4.2 (Case 1). Let z = xb 10 + B2(w) + yb 11 P H1(E). If x ‰ 0, then, |z| ě βαnl
4 .

Proof. Let z = h + v where h P B1F0, v P B0F1. We will assume |h| ď αnl
4 because otherwise

the claim is directly true. Denote ht :=
(
1 + γ + ¨ ¨ ¨+ γt) h. We first show that there exists

1 ď t ď l such that αln
2 ď |ht| ď αnl.

Let h =
ř

b bb gb. Since, x ‰ 0, there are at least |x| many b such that |gb| = 1 mod 2.
This is because B2(b b fb)|B1F0 = b b B(fb) and B(fb) only has even weight. Now, hl =
ř

b |gb|bb 10 and thus

|hl| = l ¨ #tb such that|gb| is odd.u ě ld1(B) ě αln.

5The paper does not make the identification explicit and instead writes B(f) = (1 + γ) f . We prefer to do
so to prevent confusion between the different spaces.

27

From the definition, ht = ht´1 + γth and thus, |ht| ď |ht´1|+ |h| ď |ht´1|+ αln/8. Thus,
there exists some t for which αnl/2 ď |ht| ď αnl.

B(
(
1 + γ + ¨ ¨ ¨+ γt) h) =

(
1 + γ + ¨ ¨ ¨+ γt) Bh (Compatibility of action)

=
(
1 + γ + ¨ ¨ ¨+ γt) Bv (B(h + v) = 0)

=
(
1 + γ + ¨ ¨ ¨+ γt) (1 + γ)ι(v) (Definition of BF1)

= (1 + γt+1)ι(v).

Thus, |B(ht)| = |(1 + γt+1)ι(v)| ď 2|v|. From the expansion property, |B(ht)| ě β|ht| ě β αln
2

and thus, the result follows.

We will use the following simple lemma which is easy to prove by a probabilistic argu-
ment but we omit it.

Lemma 4.4.3. [PK21, Lemma 5] Let w =
ř

b bb fb such that | fb| ď l/2 for every b. Then, there
exists t ą 0 such that |(1 + γt)w| ě |w|.

Lemma 4.4.4 (Case 2). Let z = B2(w) + y b 11 P H1(E) and let y be such that w is lowest
weight. Then, |z| ě βl

6d .

Proof. Let w =
ř

b bb fb and assume that | fb| ą l/2. Then, we consider w1 = w + bb 11
which reduces the weight of fb. As, B(bb 11) = B(b)b 11 we can take y1 = y + B(b) and
this reduces weight of w. The low weight assumption therefore implies that | fb| ď l/2 for
every b.

Let z = h + v where h P B1F0, v P B0F1 as before. v = B(w)|B0F1 + yb 11 and thus,

|w| ě
|Bw|B0F1

d
ě
|y|l ´ |v|

d
ě

l ´ |v|
d

.

If |h| ě l´|v|
6d , then, |z| ě |h|+ |v|

6d ą
l

6d and we are done. So we assume otherwise.

Let wt = (1 + γt)w. By Lemma 4.4.3, there is a t1 for which |wt1 | ě |w|. Since, w1 =
(1 + γ)w and h = ι(w1) , we have, |w1| = |ι(w1)| = |h|. Moreover, wt = w1 + γwt´1and
thus, |wt| ď |wt´1|+ |h|. Therefore, we can find, t ď t1 such that l´|v|

2d ď |wt| ď
l´|v|

d ď l.

2|z| ě |(1 + γt)z| = |B(1 + γt)w|
ě β|B(wt)|

ě β
l ´ |v|

2d

ě
βl
2d
´ |z|.

28

Chapter 5

Decoding

In this chapter, we will look at the recent decoding algorithms for quantum LDPC codes.
The first one by [EKZ20] is a general-purpose reduction which reduces the problem of
decoding the tensor product of two codes to decoding the codes individually. The second
one we will study is the algorithm from [HHO21] which gives a decoder for the twisted
product. Let’s begin with the classical definition of the decoding problem and look at what
its quantum generalization is.

5.1 Classical Decoding

The classical setup is this: you have a code-word x that you wish to transmit across some
communication channel. The process of communication introduces errors and the final
output is x + e for some error e. The problem of unique decoding is to recover x given
x + e or equivalently, to compute e. There are different error models which try to capture
how such errors occur. For example, the errors could be random or adversarial. In the
random case, we ask for decoders that work with high probability. A classic example is
the Shannon’s binary symmetric channel where a code-word is a boolean string and each
bit is flipped with a probability p. The one we will stick to is the Hamming model in which
the errors can be adversarial but we have an upper bound on the number or such errors.
Let’s stick to our model of binary linear codes and see what precisely the question is. The
code is a linear subspace C Ď F

n
2 with the property that for every non-zero code-word

x P C, |x| ě d. The (unique)decoding radius is the maximum amount of error upto which
unique decoding is possible. Since, any two code-words are distance d apart, if the error is
ă d/2, then there is a unique code-word closest to the perturbed word. Decoding thus can
be seen as computing i.e. arg minyPC |y + x1|where x1 = x + e is our input with a guarantee
that |e| ă d/2 and the minimizer is the unique code-word x. While this is an information
theoretic bound, achieving this algorithmically is challenging and we are usually satisfied
to decode errors upto a radius that is any constant factor of the distance.

Classical decoding For a code C Ď Fn
2 , let x P C and e P Fn

2 such that |e| ă d/2

Input s := x + e
Output x or equivalently,

y = arg minyPC |y + s|

29

5.2 Quantum Decoding

As a quantum CSS code is a set of two codes, it is no surprise that we need to solve two
decoding tasks. But both are symmetric so we just need to understand one of them. Let
C : C2 Ñ C1 Ñ C0 be a quantum CSS code. We have two vector spaces CX = ker(B1), CKZ =
im(B2) with the relation, ker(B1) = im(B2)‘W. We also know that for every non-zero vec-
tor w P W and any y P im(B2), we have |w + y| ě d1(C). The code is W and we have a
perturbed vector w + e where w P W, e P C1 and |e| ă d/2. The situation would be identi-
cal to the classical case if we were given w + e as the input. However, that is prohibited in
the quantum setting due to the no cloning theorem. This is because codewords now rep-
resent quantum states and once you “see" them you have destroyed them and hence, you
cannot directly read off the perturbed state as that would destroy the original information
you wish to correct! However, what one can do is make syndrome measurements.

One can imagine the quantum setting as one in which we have a black-box around
the perturbed quantum state x + e that prevents us from seeing it but lets us make apply
certain unitary operators and make syndrome measurements. Using the syndrome s =
B1(e), we want to compute the error e using which one can compute a unitary matrix Ue
which is such that Ue(x + e) = x and thus the state is recovered in a black-box fashion. 1

We will first reformulate the classical decoding problem discussed earlier which will make
the generalization to the quantum case very natural.

Classical decoding (reformulated) For a 1-complex C, let e P C1.

Input s := B1(e)
Output e or equivalently (if |e| ă d1(C)/2),

y such that B1(y) = s, |y| ă d1(C)´ |e|

This is indeed a reformulation because given x + e as earlier, we can compute s =
B1(x + e) = B1(e). If we can decode s to compute e, then we get x = s + e. In the other
direction, given s, we can use Gaussian elimination to construct x1 + e for some x1 P C.
Now, we can run the earlier decoder, to compute x1 and hence e. So, these two problems
are identical. The quantum generalization is now direct,

Quantum decoding For a 2-complex E , let e P E1.

Input s := BE1 (e)
Output y = e + B2(w) for any w P E0, or equivalently,

y such that B1(y) = s, |y| ă d1(E)´ |e|

The first condition ensures that y and e differ only by a kernel vector while the second
forces this difference to be a coboundary because of the distance property.

The terms X(Z)-decoding refer to decoding E and E˚ respectively.

1The mapping between quantum states and their error correction which are vectors in C2n
to Fn

2 is quite
interesting and detailed information can found in any textbook or course lecture notes .

30

5.3 Tensor Reduction

Now, we will discuss the reduction in [EKZ20] that proves that if we can decode the indi-
vidual codes Q, C then we can decode the tensor product code. Although, they state their
result in a slightly restricted setting and give different proofs for X, Z decoding, the core
idea is the same and we will present here a simple unified proof from which deriving their
results would be straightforward.

The setting is as follows. Let X ,Y be chain complexes and E := X b Y . For any
low-weight error e P Ek, given the syndrome, Bk(e), we wish to compute e + l for any
l P im(BEk+1). The goal of the section is to show that if we have decoding algorithms for
the complexes, X ,Y , we can decode E . For a vector x P Ek, let xj denote its projection to
XjYk´j.

Uncoupled case

We start with the case when the error e is supported only on one of the subspaces XjYk´j.
The general case follows directly by reducing this case using coboundary elements.

Lemma 5.3.1. Let ej P XjYk´j such that |ej| ď δXj δYk´j. Then, ej can be decoded given BEk (ej).

Proof. Let ej =
ř

y vy b y where y runs over the basis of Yk´j. Let B(ej) = sj + sj´1, and
sj´1 =

ř

y B
X
j (vy)b y. Thus, we can simply read off BXj (vy) and feed this to the Xj-decoder

to obtain v1y. Let u =
ř

y v1y b y.

If |vy| ď δXj , then the decoder’s output v1y is equal to vy. Let S = ty | |vy| ą δXj u. Since,

|ej| ď δXj δYk´j, we get that |S| ď δYk´j. Therefore,

ej + u =
ÿ

yPS

(vy + v1y)b y =
ÿ

x
xbwx.

If we visualize the tensor product space XjYk´j as a matrix, then the change of basis from
Y to X amounts to looking at rows instead of columns. As a consequence, for every x,
|wx| is bounded by the number of non-zero columns which are supported on S. Thus,
|wx| ď |S| ď δYk´i. We can thus, compute sj + B(u)j = B(e + u)j =

ř

x x b BYk´j(wx) and

decode each BYk´j(wx) by Y-decoding.

Normal Form

To handle the general case, we need to first have a kind of normal form for the error e such
that we can decouple the syndrome and decode it individually using Lemma 5.3.1. To do
so, we start by decomposing our spaces as a union of the images of the boundary map and
a “residue". Let X ,Y be chain complexes and let Ii := im(BXi+1), Ji := im(BYi+1). Then, 2

Xi = Ii ‘ X1i , Yk´i = Jk+1´i ‘Y1k´i

Xi bYk+1´i = (Ii ‘ X1i)b
(

Jk´i ‘Y1k´i
)

= Ii Jk+1´i ‘ X1i Jk´i ‘ IiY1k+1´i ‘ X1iY
1
k´i

31

I0 J0
X10 J0

I0Y10 X10Y10

I0 J1
X10 J1

I0Y11 X10Y11

I1 J0
X11 J0

I1Y10 X11Y10

I1 J1
X11 J1

I1Y11 X11Y11

I2 J0
X12 J0

I2Y10 X12Y10

I2 J1
X12 J1

I2Y11 X12Y11

idbBY1 idbBY1 idbBY1

BX2 b id BX1 b id

BX2 b id BX1 b id

Figure 5.1: A visual depiction of the decomposition

We say that e P Ek is in normal form if given its syndrome, Bk(e), we can compute the
syndrome of each component Bk(ej). The following lemma states that we can always obtain
such a form by adding a nice coboundary.

Lemma 5.3.2. For any e P Ek, there exists a vector z P Ek+1 such that, e1 = e + Bk+1(z) is in
normal form. Hence, given Bk(e), we can compute Bk(e1j) for every j ď k.

Proof. Since, X1j Jk´j Ď im(idbBY1), there exists a zj such that the restriction of Bk+1zj + ej to
X1j Jk´j is zero. Let z =

ř

j zj and e1 = e + Bk+1(z). Then,

e1j = ej + (idbBY1)(zj) + (BX1 b id)(zj+1).

The restriction of e1j to X1j Jk´j is still zero as im(BX1 b id) is disjoint from X1j Jk´j. For any j,
we look at sj = (idbBY1)(ej) + (BX1 b id)(ej+1). By definition, the first term is contained
in Xj Jk´j´1. Since, ej+1 has a zero X1j+1 Jk´j´1 component, (BX1 b id)(ej+1) is contained in
IjY1k´j´1 and hence disjoint from first term. Thus, by projecting sj to the relevant subspace
we can compute each term individually and hence compute Bk(e1j).

Theorem 5.3.3. Let δXi , δYj be the number of errors that the decoding algorithm for the maps BXi , BYj
can correct. If Bi = 0 we let δi = 1. Then, Algorithm 1 corrects mini δXi δYk´i errors for the map BEk
where the minimum is over the indices i such that dim(XiY1k´i) ą 0.

Proof. Let the error be e and assume it is in normal form. Using Lemma 5.3.2, we can
compute Bk(ej) for each j. Using Lemma 5.3.1, we can decode ej and thus we obtain e =
ř

j ej.

2Note - There are situations in which we already have a fixed basis which we do not wish to alter. We
therefore do not assume that we have a basis that respects this decomposition.

32

Algorithm 1: Decoding TensorProduct

input : s = BEk (e)
output: e + l, l P im(BEk+1)
u Ð 0;
for j P tk, ¨ ¨ ¨ , 0u do

if dim(XjY1k´j) ą 0 then
if BXj ‰ 0 then

Write sj´1 =
ř

y B
X
j (vy)b y;

Decode each BXj (vy) using Xj-decoding algorithm to obtain v1y;
uj Ð

ř

y v1y b y;
u Ð u + uj;
s Ð s + Bk(uj);

if BYk´j ‰ 0 then
Let P be the projection matrix P : Xj Ñ X1j
Obtain (Pb I)sj =

ř

x xb BYk´j(wx)

Decode each BYk´j(wx) using Yk´j-decoding algorithm to obtain w1x;
u1j Ð

ř

x xbw1x;
u Ð u + u1j;
s Ð s + Bk(u1j);

return u

We can now use this to get the results from [EKZ20] as a special case.

Theorem 5.3.4. [EKZ20, Thm. 2.5] Let X be a Ramanujan 2-complex and C be a 1-complex such
that BC1 is surjective. Let E = (X b C)3.

i) Suppose the classical LDPC code C comes with a polynomial-time decoding algorithm that
corrects any pattern of less than α fraction of errors. Then, there is a polynomial time algo-
rithm for E that corrects all X-errors of weight smaller than α|C1|

d1(X)
2 .

ii) Suppose there is a polynomial time decoding algorithm for the component quantum code X
that corrects any pattern of Z-errors of weight smaller than w. Then there exists a polynomial
time algorithm for E that corrects any pattern of Z- errors of weight smaller than w.

Proof. i) We have to find an error in the space E1 = X2C0‘X1C1. Since, BC1 is surjective,
dim(C10) = 0 and hence dim(X2C10) = 0. Now, from Theorem 5.3.3, we get that we
can do decode E1 upto δX1 δY1 errors. From the classical LDPC assumption, δY1 = α|C1|

and the decoder for BX1 is the cyclic decoder which can decode all errors upto d1(X)
2

in polynomial time. Thus, δX1 = d1(X)
2 . The result directly follows.

ii) Now, we will apply the theorem to E˚. Clearly, BX
˚

0 = BC
˚

0 = 0 and by convention
δX

˚

0 = δY
˚

0 = 1. Also, (BC1)
˚ is injective and thus, BY

˚

1 is completely invertible and
thus, min(δX

˚

1 , δY
˚

1) = δX
˚

1 . Z-error decoding of X , corresponds to decoding BX
˚

1
and thus δX

˚

1 = w. Therefore, from Theorem 5.3.3, we can correct w errors.

33

5.4 Twisted Product

We denote by E = B bϕ F , the twisted product construction as described earlier in Sec-
tion 2.2.5. The paper only gives us a Z-decoding algorithm because it relies on unique
expansion which is a stronger form of (α, β)-expansion. We call a map H : Fm

2 Ñ F
n
2 ,

(α, γ) - unique expanding if for every x P Fm
2 such that |x| ď αm, there are at least γ|x|

elements b P supp(Hx) such that b P supp(B(a)) for a unique a P supp(x).

Lemma 5.4.1. [HHO21, Prop. 3.1] If B is constructed randomly as described, then, except with
probability at most O(1/n100), the map BB

˚

1 : B0 Ñ B1 is (1
105∆ , 0.81∆) unique-expanding.

Thus, we will always use the dual maps and to avoid notational clutter, we now rede-
fine our complex to be the dual of the actual one,

B := B0 Ñ B1, E := B0F0 Ñ B0F1 ‘ B1F0 Ñ B1F1.

Given s P B1F1 as input, the goal is to recover a vector y which is equal to the error
upto coboundaries. The only certificate that y is indeed of the above form is to show that
B1(y) = s and that y is low-weight. The algorithm will also proceed along the same lines.
We first construct a y such that B1(y) = s and then iteratively add elements of ker(B1) such
that |y| becomes lesser than d1(E)´ |e˚|.

5.4.1 The algorithm

Let us denote by e˚, the error such that the input provided is s = B1(e˚). We will use
x|v, x|h to denote the restriction of x P E1 to the spaces B1F0, B0F1 respectively.

The first step is to build a pre-image of the syndrome which is computationally easy
using the following lemma which gives us a vector e0 such that e˚ + e0 P ker(B1).

Lemma 5.4.2. Given s = B1(e), we can compute a vector e0 such that B1(e0) = s, in deterministic
polynomial time.

Proof. Let e˚|h = eb b 11 +
ř

a a b fa where | fa| is even for every a. Similarly, let s =
sp b 11 +

ř

b bb fb. By direct computation and a parity argument , BB1 (eb) = sp. Now, if
we we assume that BB

˚

1 : B1 Ñ B0 was surjective, BB1 is injective and we can find the exact
pre-image eb by linear algebra. 3

e˚ = e˚|h +
ÿ

b

bb gb

= eb b 11 +
ÿ

a
ab fa +

ÿ

b

bb gb

= eb b f0 +
ÿ

a
ab f 1a +

ÿ

b

bb gb

B(e˚) = B(eb b f0) + B

(
ÿ

a
ab f 1a

)
+
ÿ

b

bb B(gb)

s = B(eb b f0) +
ÿ

b

bb

(
ÿ

a:bPBa

ϕ(b, a) f 1a

)
+
ÿ

b

bb B(gb)

3[HHO21] uses Sipser-Spielman to compute eb.

34

= B(eb b f0) +
ÿ

b

bb (fb + B(gb))

= B(eb b f0) +
ÿ

b

bb B(g1b)

The main thing is that | f 1a| is even for each a and thus, | fb| and | fb + B(gb)| are also even.
Since, every vector of even weight is in the image, we have such a g1b . Since, s is known
and B(eb b f0) can be computed, we can compute B(g1b). Computing g1b is then easy as the
boundary map here is the one for the circle.

This completes part one of the algorithm which builds some pre-image of the syn-
drome. In the HHO construction, we have H0(B) = 0, Hi(F) = spant1iu and any twist
preserves the all-ones vector. Applying Lemma 3.0.1 then gives us,

e˚ + e0 = BE0 (w) + xb 10.

The task now is to remove the part not in the coboundary, i.e., x. This will be done by a
sequence of local changes that will try to reduce |e0|h|. Let us look at the overall algorithm
now and then focus on the iterative step.

Algorithm 2: Iterative HHO decoder

input : s = BE1 (e
˚)

output: y = e˚ + l, l P im(BE2)
Let s =

ř

bPSo
bb 11 +

ř

bPSe
bb fb;

sp Ð
ř

bPSo
b;

Compute eb such that BB1 (eb) = sp;
Compute z =

ř

b bb gb P B1F0 such that B1(z) =
ř

bPSe
bb fb;

y Ð eb b f0 + z;
while There is some progress do

for a P B0 do
Compute ya P F0, x P B1 such that | (y + B2(ab ya) + xb 10)h | is minimized;
y Ð y + B2(ab ya) + xb 10;

end
end
return y

Line 8 can be done in two ways. The key is to notice that this is a system of 2-XOR
equations and we need to satisfy as many equations as possible. The brute force method
is to go over all x supported over B1(a) and then we can readily compute y. This takes
time O(2∆|F0|) which is doable in polynomial time if the degree is at most O(log n). In
[HHO21], the degree is O(log2 n) and thus they appeal to the MAX-CUT algorithm by
Goemans-Williamson to approximately compute such a solution. We now mention a cou-
ple observations from such an update that will be helpful later.

1. Observation 1 - We can assume that |ya| ď |F0|/2. It is easy to see that we can toggle
the x to compensate for it

2. Observation 2 - The change is non-trivial i.e ya ‰ 0 only if yX supp(B(a)) ą ∆
2 . This

is because if half of the neighbours of a are currently unsupported i.e., empty, then

35

adding this adds a weight of at least ∆|ya|

2 . The decrease on the supported neigh-
bors can be at most ∆|ya|

2 . Therefore, for the ya to reduce weight more than half its
neighbors must already be in the support of y.

5.4.2 The proof

As mentioned earlier, we need to argue that once the decoder halts, i.e., once we reach a
“local minima", we will obtain a sufficiently low weight y. Let e0 be the initial y before the
start of weight reduction (line 6).

Denote by et the vector y after t iterations and let eτ be the final output. The proof
outline is as follows.

1. We start with e0 = eb b f0 + z, z P B1F0 such that |eb| ď |e˚|

2. We say that a is fixed if in some iteration we added a non-trivial ab ya. We first show
that the set A of fixed a is small i.e. |A| ď c|B0|.

3. Thus, the output is eτ = eb b f0 + z + B(
ř

aPA ab ya) + xτ b F0. Rewrite this as eτ =
eb b f0 +

ř

aPA ab B(ya) + zh where zh P B1F0 is the horizontal part.

4. Let eτ = e˚ + B(w) + xb 10. Comparing the vertical (i.e. B0F1) components, we get
that if w =

ř

aPW abwa, then |W| ď |A|+ |eb|.

5. We rearrange and compare horizontal parts to get,

(eτ + e˚ + B(w))h :=
ÿ

b

bb gb = xb 10.

The crux of the entire proof is to show that for any b, |gb| ă |F0| and thus xb = 0. This
is achieved by using that |W| is small (which enables using vertex expansion of BB),
and that eτ is a local minima.

Few fixes

In this part, we will prove the claim that the number of elements that are fixed are few. Let
At be the set of all a that have been fixed till the tth iteration. Note that |At| ď t as the same
a could be fixed multiple times.

Going back to the proof of Lemma 5.4.2, we have s = B(eb b f0) + B(z) where z =
ř

bPQ b b g1b. Here, the set Q is contained in the support of s and B(eb). But eb was con-
structed such that B(eb) = sp whose support is a subset of that of s. Thus, Q Ď supp(s)
and hence, |Q| ď ∆|e˚|.

Lemma 5.4.3. Let B(At) =
Ť

aPAt
B(a). Then, γ|At| ď |B(At)| ď |Q| + ∆

2 |At|. Therefore,

|At| ď
2|Q|

(2γ´∆) ď
2∆|e˚|
(2γ´∆) for any time t.

Proof. By (α, γ) expansion of B and the assumption that |At| ď α|B0|, we have that |B(At)| ě
γ|At|. We now upper bound this to prove a bound on |At|.

Let at be the last new element that is fixed in the set At. Let Ct are the co-unique elements
added to the support, i.e, Ct = tb P B(at) | b R B(At´1)u . Let Dt = B(at)zCt. We can see
that B(At) =

Ť

t Ct.

36

From observation 2, we know that at least half of neighbors of at must be present, i.e.,
|B(at)X (QYBAt´1)| ě ∆/2. Now, Dt is already present and the only elements that can be
present in Ct are those in Q. Thus, |Ct XQ| ě ∆/2´ |Dt| and therefore,

|Ct XQ| ď |Ct| ´ (∆/2´ |Dt|) = |Ct|+ |Dt| ´ ∆/2 = ∆/2.

Now, |(B(At)XQ)| ď |Q| and B(At)XQ =
Ť

t(Ct XQ). Thus,

γ|At| ď B(At)| = |Q|+
ÿ

t

|Ct XQ| ď |Q|+
∆|At|

2
.

Small total weight

This is an ingenious inductive argument and the the crux of the entire proof4. As men-
tioned before, let

eτ = e˚ + B(w) + xb 10

where w =
ř

aPW a b ya. We have noted that |W| ď |A|+ |eb| and from the earlier part
we have |W| ď c|e˚| ď α|B0| where c is a constant. The inductive procedure is to slowly
unravel B(w), i.e. , we order the elements of W and define Wt = Wzta1, ¨ ¨ ¨ , at´1u. Thus,
W1 = W and we inductively define Wt+1 by picking at P Wt as follows.

Inductive Ordering Let St =
Ť

aPWt
B(a) and decompose St = Ct YDt which like earlier

denotes the sets of unique and non-unique neighbors i.e. Ct is that subset of b which has
a unique neighbor in Wt. Since, |Wt| ď |W| ď α|B0|, we can use Lemma 5.4.1 to get that
|Ct| ě γ|Wt|. By an averaging argument, we have that there exists an a P Wt with at least γ
neighbors in Ct. We define this to be at. If there are many such, pick any.

Theorem 5.4.4. [HHO21, Lemma 5.2] Let e1 = e˚ and recursively define et = et´1 + B(at´1 b

yat´1) :=
ř

b bb gt
b where the ai P W are defined as above. If the expansion parameter γ ą 3∆

4 ,
then for every time step t the following statements hold,

1. For every b P B1 we have |gt
b| ă

|F0|
2

2.
ř

bPSt
|gt

b| ď
|F0|
100 where St =

Ť

iět B(ai)

3. For t ą 1, |yat´1 | ă
|F0|

2

(
∆
γ ´

96
100

)
Before we prove it, we see how this suffices to show that x is 0 and hence, decoding is

achieved.

Corollary 5.4.5. The vectors eτ, e˚ differ by a coboundary, i.e., eτ = e˚ + B(w).

Proof. At the last step, i.e., t = |W|+ 1, we have that e|W|+1 = e˚ + B(w) = eτ + x b 10.
We compare the horizontal parts on either sides. On the LHS, for any b we are guaranteed
that |gb| ă

|F0|
2 and we also have that same for any gτ

b in eτ as it is a local minima and if a b
violates it, then eτ + bb10 would reduce the horizontal weight and therefore the algorithm
wouldn’t have terminated. Now, bb gb = bb gτ

b + bb xb10 and since |gb|+ |gτ
b | ă |F0| we

must have xb = 0. As it holds for every b, x = 0.
4According to me, of course.

37

Proof Overview The reason that W is sorted according to co-unique neighbors is that the
counique neighbors at time t don’t change after time t as they have no other neighbors.
Thus, for such b we can reason about gt

b = gτ
b by leveraging that eτ is a local minima.

For other b, we have to resort to a worst case trivial bound. From local minimality, |eτ +
B(ab z)|h ě |eτ|h for any z. Using this we can glean two facts about yat´1 . Let the unique
neighbors of at´1 be C := Ct´1 X B(at´1) and let D := B(at´1)zC.

• Applying it with z = yat´1 , we get that |yat´1 | is not too large (i.e. claim 3) if the
weight on C Ď St´1 is small (claim 2).

• For any i P supp(yat´1), apply it with z = gi which is a vector in F0 only supported
on i. We get that

ř

bPC |(gb)ϕ(b,at´1)´1i| ě
∆
2 ´ |D|. This readily proves claim 2.

What follows is merely a more detailed exposition of the above idea.

Proof of Theorem 5.4.4. Base Case. e1 = e˚. Thus,
ř

b |gb| = |e˚| ď |F0|
100 and therefore both

the conditions are satisfied. The third claim is valid only for t ą 1.

Inductive Step - Let the inductive claim hold at time t ´ 1. We first prove the third
claim. Since, eτ is a local minima,

|eτ|h ď |eτ + B(at´1 b yat´1)|h.

Clearly, the vectors only differ in gb for b P B(at´1). Let the unique neighbors of at´1 be
C := Ct´1 X B(at´1). Since at´1 P Wt´1, we have that B(at´1) Ď St´1. By the recursive
definition we have,

gt
b = gt´1

b + ϕ(b, at´1)
´1yat´1

and thus,
|gt

b| = |g
t´1
b + ϕ(b, at´1)

´1yat´1 | ě |yat´1 | ´ |g
t´1
b | (5.1)

For any subsequent any t1 ě t, gt1
b = gt

b because if b P C then it has no other neighbor
in Wt. Thus, this yb is the same as that in eτ.

The weight added must be greater than the weight reduced so we have,
ÿ

bPC

|yb|+
ÿ

bPD

|yb| ď
ÿ

bPC

|y1b|+
ÿ

bPD

|y1b|

ÿ

bPC

|yb| ď
ÿ

bPC

|y1b|+
ÿ

bPD

(|yb| ´ |y1b|)

ÿ

bPC

|gt
b| ď

ÿ

bPC

|gt´1
b |+

ÿ

bPD

|F0|
2

|C||yat´1 | ´
ÿ

bPC

|gt´1
b | ď

ÿ

bPC

|gt´1
b |+ |D| |F0|

2 (Using Eq. (5.1))

|C||yat´1 | ď 2
ÿ

bPC

|gt´1
b |+ |D| |F0|

2

|C||yat´1 | ď 2
|F0|

100
+ |D| |F0|

2 (By inductive claim 2)

|yat´1 | ď
|F0|

2

(
∆´ |C|
|C|

+
4

100

)
(|C|+ |D| = ∆)

38

|yat´1 | ď
|F0|

2

(
∆
γ
´

96
100

)
(a is such that |C| ě γ) .

This shows claim 3 and using this we can easily show claim 1 for the inductive step
t as the only b that were changed were those present in B(at´1) Ď St´1. Thus, |gt

b| ď

|gt´1
b |+ |yat´1 | ď

|F0|
100 +

|F0|
2

(
∆
γ ´

96
100

)
. This is less than |F0|

2 if γ ą 100
194 ∆.

Now we prove claim 2. First note that St = St´1zC. So, we need to account for all the
weight added on D minus the weight already present on C. We write yat´1 =

ř

iPT gi where
gi are unit vectors in F0 supported only on i and T = supp(yat´1). Clearly, total weight
added is at most |D||T|. The weight removed is the sum of weight removed for each such
i. Let ib denote ϕ(b, at´1)

´1i. In precise terms, the weight removed is
ř

iPT
ř

bPC |(gt´1
b)|ib .

We will now show that the inner sum is at least |C|´|D|2 for every i. This implies that total

difference is |T|
(
|D| ´ |C|´|D|

2

)
ď 0 if γ ą 3∆

4 .

From local minimality, we have |eτ + at´1 b gi|h ě |eτ|h. For b P C, gτ
b = gt

b and
(eτ + at´1 b gi)b = gt´1

b . For b P D we don’t make any claims and use the trivial bounds.

Thus,

ÿ

bPC

|(gt´1
b)ib |+

ÿ

bPD

|(zb)ib | ě

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

bPC

(gt
b)ib

ˇ

ˇ

ˇ

ˇ

ˇ

+
ÿ

bPD

|(zb + ϕ(b, at´1)
´1gi)ib |

ÿ

bPC

|(gt´1
b)ib | ě

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

bPC

(gt´1
b + ϕ(b, at´1)

´1gi)ib

ˇ

ˇ

ˇ

ˇ

ˇ

+
ÿ

bPD

(|(zb)ib | ´ |(zb)ib |)

ÿ

bPC

|(gt´1
b)ib | ě

ÿ

bPC

(
|ϕ(b, at´1)

´1gi)ib | ´ |g
t´1
b |

)
´ |D|

2
ÿ

bPC

|(gt´1
b)ib | ě |C| ´ |D|.

This concludes the proof of claim 2 and, therefore, of the entire theorem.

39

Bibliography

[ACKM19] Naman Agarwal, Karthekeyan Chandrasekaran, Alexandra Kolla, and Vivek
Madan. On the Expansion of Group-Based Lifts. SIAM J. Discret. Math.,
33(3):1338–1373, 2019. arXiv:1311.3268, doi:10.1137/17M1141047.

[AMN98] Yossi Azar, Rajeev Motwani, and Joseph (Seffi) Naor. Approximating prob-
ability distributions using small sample spaces. Combinatorica, 18(2):151–171,
February 1998. doi:10.1007/pl00009813.

[Aud14] Benjamin Audoux. An application of Khovanov homology to quantum codes.
Annales de l’Institut Henri Poincaré D, 1(2), 2014. arXiv:1307.4677, doi:
10.4171/AIHPD/6. 9

[BE21a] Nikolas P. Breuckmann and Jens N. Eberhardt. Balanced Product Quantum
Codes. IEEE Transactions on Information Theory, 67(10):6653–6674, 2021. arXiv:
2012.09271, doi:10.1109/TIT.2021.3097347. 4, 5, 12, 14, 20

[BE21b] Nikolas P. Breuckmann and Jens N. Eberhardt. Quantum Low-Density Parity-
Check Codes. PRX Quantum, 2:040101, Oct 2021. arXiv:2103.06309, doi:
10.1103/PRXQuantum.2.040101. 5

[BH14] Sergey Bravyi and Matthew B. Hastings. Homological Product Codes. In Sym-
posium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 273–282. ACM, 2014. arXiv:1311.0885, doi:10.1145/
2591796.2591870. 4

[BL06] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral
gap. Combinatorica, 26(5):495–519, October 2006.

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On
the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory,
24(3):384–386, 1978. doi:10.1109/TIT.1978.1055873.

[BS01] Eli Ben-Sasson. Expansion in Proof Complexity. PhD thesis, Hebrew University,
2001.

[BTL10] Sergey Bravyi, Barbara M Terhal, and Bernhard Leemhuis. Majo-
rana fermion codes. New Journal of Physics, 12(8):083039, Aug 2010.
URL: http://dx.doi.org/10.1088/1367-2630/12/8/083039, doi:
10.1088/1367-2630/12/8/083039. 3

40

http://arxiv.org/abs/1311.3268
https://doi.org/10.1137/17M1141047
https://doi.org/10.1007/pl00009813
http://arxiv.org/abs/1307.4677
https://doi.org/10.4171/AIHPD/6
https://doi.org/10.4171/AIHPD/6
http://arxiv.org/abs/2012.09271
http://arxiv.org/abs/2012.09271
https://doi.org/10.1109/TIT.2021.3097347
http://arxiv.org/abs/2103.06309
https://doi.org/10.1103/PRXQuantum.2.040101
https://doi.org/10.1103/PRXQuantum.2.040101
http://arxiv.org/abs/1311.0885
https://doi.org/10.1145/2591796.2591870
https://doi.org/10.1145/2591796.2591870
https://doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1088/1367-2630/12/8/083039
https://doi.org/10.1088/1367-2630/12/8/083039
https://doi.org/10.1088/1367-2630/12/8/083039

[CS96] A. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes
exist. Phys. Rev. A, 54:1098–1105, Aug 1996. doi:10.1103/PhysRevA.54.
1098. 3, 8

[CT12] Eden Chlamtac and Madhur Tulsiani. Convex Relaxations and Integrality
Gaps, pages 139–169. Springer US, Boston, MA, 2012. doi:10.1007/
978-1-4614-0769-0_6.

[DFHT21] Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani. Explicit SoS
lower bounds from high-dimensional expanders. In 12th Innovations in Theo-
retical Computer Science Conference, ITCS 2021, 2021. doi:10.4230/LIPIcs.
ITCS.2021.38.

[DMS99] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of approximat-
ing the minimum distance of a linear code. In 40th Annual Symposium on Foun-
dations of Computer Science, FOCS ’99,17-18 October, 1999, New York, NY, USA,
pages 475–485. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.
814620.

[EKZ20] Shai Evra, Tali Kaufman, and Gilles Zémor. Decodable quantum LDPC
codes beyond the square root distance barrier using high dimensional ex-
panders. In Proceedings of the 61st IEEE Symposium on Foundations of Computer
Science, pages 218–227. IEEE, 2020. arXiv:2004.07935, doi:10.1109/
FOCS46700.2020.00029. 4, 5, 10, 11, 23, 29, 31, 33

[Gal60] Robert G Gallager. Low density parity check codes. PhD thesis, Massachusetts
Institute of Technology, 1960. URL: https://dspace.mit.edu/handle/
1721.1/11804. 3

[Gal62] R. Gallager. Low-density parity-check codes. IRE Transactions on Information
Theory, 8(1):21–28, 1962. doi:10.1109/TIT.1962.1057683. 3

[Gil52] E. N. Gilbert. A comparison of signalling alphabets. Bell System Technical Jour-
nal, 31(3):504–522, 1952. doi:10.1002/j.1538-7305.1952.tb01393.x.
3

[HHO21] Matthew B. Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber bundle
codes: breaking the n1/2polylog(n) barrier for quantum LDPC codes. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 1276–1288. ACM, 2021. arXiv:2009.03921, doi:
10.1145/3406325.3451005. 2, 4, 5, 12, 15, 18, 20, 22, 23, 24, 25, 27, 29, 34,
35, 37

[JMT21] Fernando Granha Jeronimo, Tushant Mittal, and Madhur Tulsiani. Explicit
Abelian Lifts and Quantum LDPC Codes. Personal communication, 2021.

[KT21] Tali Kaufman and Ran J. Tessler. New cosystolic expanders from tensors imply
explicit quantum LDPC codes with Ω(

?
n logk n) distance. In STOC ’21: 53rd

Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 1317–1329. ACM, 2021. arXiv:2008.09495, doi:
10.1145/3406325.3451029. 4

41

https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1007/978-1-4614-0769-0_6
https://doi.org/10.1007/978-1-4614-0769-0_6
https://doi.org/10.4230/LIPIcs.ITCS.2021.38
https://doi.org/10.4230/LIPIcs.ITCS.2021.38
https://doi.org/10.1109/SFFCS.1999.814620
https://doi.org/10.1109/SFFCS.1999.814620
http://arxiv.org/abs/2004.07935
https://doi.org/10.1109/FOCS46700.2020.00029
https://doi.org/10.1109/FOCS46700.2020.00029
https://dspace.mit.edu/handle/1721.1/11804
https://dspace.mit.edu/handle/1721.1/11804
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1002/j.1538-7305.1952.tb01393.x
http://arxiv.org/abs/2009.03921
https://doi.org/10.1145/3406325.3451005
https://doi.org/10.1145/3406325.3451005
http://arxiv.org/abs/2008.09495
https://doi.org/10.1145/3406325.3451029
https://doi.org/10.1145/3406325.3451029

[LPS88] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, September 1988. doi:10.1007/bf02126799.

[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum Expander
Codes. In Proceedings of the 56th IEEE Symposium on Foundations of Computer Sci-
ence, pages 810–824. IEEE, 2015. arXiv:1504.00822, doi:10.1109/FOCS.
2015.55. 5

[MOP20] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. Explicit near-
ramanujan graphs of every degree. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,
June 22-26, 2020, pages 510–523. ACM, 2020. arXiv:1909.06988, doi:
10.1145/3357713.3384231.

[MRR+20] Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and Mary
Wootters. LDPC codes achieve list decoding capacity. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 458–469. IEEE, 2020. arXiv:1909.06430, doi:
10.1109/FOCS46700.2020.00050. 3

[PK21] Pavel Panteleev and Gleb Kalachev. Quantum LDPC Codes with Almost Lin-
ear Minimum Distance. IEEE Transactions on Information Theory, December
2021. arXiv:2012.04068, doi:10.1109/TIT.2021.3119384. 2, 4, 5, 11,
12, 18, 22, 23, 24, 27, 28

[Rao19] Shravas Rao. A Hoeffding inequality for Markov chains. Electronic Commu-
nications in Probability, 24:1 – 11, 2019. arXiv:1806.11519, doi:10.1214/
19-ECP219.

[SS96] M. Sipser and D.A. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, 1996. doi:10.1109/18.556667. 4, 5

[Ste96] Andrew Steane. Multiple-particle interference and quantum error correc-
tion. Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 452(1954):2551–2577, Nov 1996. arXiv:quant-ph/
9601029v3, doi:10.1098/rspa.1996.0136. 3, 8

[Tan81] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on
Information Theory, 27(5):533–547, 1981. doi:10.1109/TIT.1981.1056404.
4

[Tre04] Luca Trevisan. Some applications of coding theory in computational complex-
ity. Quaderni di Matematica, 13:347–424, 2004. arXiv:cs/0409044v1. 3

[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum ldpc codes with positive rate
and minimum distance proportional to the square root of the blocklength. IEEE
Transactions on Information Theory, 60(2):1193–1202, Feb 2014. URL: http://
dx.doi.org/10.1109/TIT.2013.2292061, doi:10.1109/tit.2013.
2292061. 4, 5, 10, 18, 23

[Var57] RR Varshamov. Estimate of the number of signals in error correcting codes.
Dokl. Akad. Nauk SSSR, 117:739–741, 1957. 3

42

https://doi.org/10.1007/bf02126799
http://arxiv.org/abs/1504.00822
https://doi.org/10.1109/FOCS.2015.55
https://doi.org/10.1109/FOCS.2015.55
http://arxiv.org/abs/1909.06988
https://doi.org/10.1145/3357713.3384231
https://doi.org/10.1145/3357713.3384231
http://arxiv.org/abs/1909.06430
https://doi.org/10.1109/FOCS46700.2020.00050
https://doi.org/10.1109/FOCS46700.2020.00050
http://arxiv.org/abs/2012.04068
https://doi.org/10.1109/TIT.2021.3119384
http://arxiv.org/abs/1806.11519
https://doi.org/10.1214/19-ECP219
https://doi.org/10.1214/19-ECP219
https://doi.org/10.1109/18.556667
http://arxiv.org/abs/quant-ph/9601029v3
http://arxiv.org/abs/quant-ph/9601029v3
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1109/TIT.1981.1056404
http://arxiv.org/abs/cs/0409044v1
http://dx.doi.org/10.1109/TIT.2013.2292061
http://dx.doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/tit.2013.2292061
https://doi.org/10.1109/tit.2013.2292061

[Var97a] Alexander Vardy. Algorithmic complexity in coding theory and the minimum
distance problem. In Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 92–109.
ACM, 1997. doi:10.1145/258533.258559.

[Var97b] Alexander Vardy. The intractability of computing the minimum distance of
a code. IEEE Trans. Inf. Theory, 43(6):1757–1766, 1997. doi:10.1109/18.
641542.

[ZP19] Weilei Zeng and Leonid P. Pryadko. Higher-Dimensional Quantum
Hypergraph-Product Codes with Finite Rates. Physical Review Let-
ters, 122(23):230501, June 2019. arXiv:1810.01519, doi:10.1103/
PhysRevLett.122.230501. 9, 22, 23

43

https://doi.org/10.1145/258533.258559
https://doi.org/10.1109/18.641542
https://doi.org/10.1109/18.641542
http://arxiv.org/abs/1810.01519
https://doi.org/10.1103/PhysRevLett.122.230501
https://doi.org/10.1103/PhysRevLett.122.230501

	 Preliminaries
	Notation table
	Linear Codes
	Tanner Codes
	Chain Complexes
	CSS Codes

	A Plethora of Products
	Tensor Product
	Hypergraph Product
	HDX Codes

	Symmetric tensor codes
	Group Action and Quotients
	Balanced Product
	Twisted Product
	Lifted Product
	Summary of the products
	An alternate perspective

	Structure
	Distance
	Tensor Product lower bound
	Upper bound
	The hho20 distance bound
	The pk20 distance bound

	Decoding
	Classical Decoding
	Quantum Decoding
	Tensor Reduction
	Twisted Product
	The algorithm
	The proof

