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Lecture 2: August 8th, 2022

Lecturer: Tali Kaufman

Intro to High Dimensional Expanders and Local to Global theorems

These notes were prepared by Tushant Mittal based on the pair of lectures by Tali Kaufman.
This is part of the 2022 Summer School on New tools for optimal mixing of Markov chains: Spectral
independence and entropy decay, which was held at the University of California, Santa Barbara
(UCSB) from August 8, 2022 to August 12, 2022. More information on the summer school is
available at: https://sites.cs.ucsb.edu/∼vigoda/School/

2.1 Introduction

In these two lectures, we will introduce simplicial complexes and prove two (local-to-global) results
about them. Namely,

1. Trickling Down Theorem - Bound the spectral gap of the local walks on any link using the
local walks on (d− 2)-links (here d is the dimension of the complex).

2. Random Walk Theorem - Using the spectral gap of local walks for all links to bound the
spectral gap of global walks, such as the Glauber dynamics.

2.2 Basic Definitions

A simplicial complex is a downward closed set system. It is called pure if every set is contained in
a subset of maximal size. The dimension of the complex is d if the largest set in the system has
size d+ 1. We denote X(k) to be the sets of size exactly k + 1 and define X(−1) = {ϕ}. The link
of a complex is related to the notion of conditioning. Formally,

Definition 2.1 (Link). Let τ ∈ X(k), then the link at τ is a (d − k − 1)-dimensional simplicial
complex, Xτ = {σ \ τ | τ ⊂ σ}.

Weights: Let w : X(d) → R≥0 be a probability measure on the top faces, i.e.,
∑

σ∈X(d)w(σ) = 1.
We can define a measure on the lower levels X(k) by trickling the weights down,

∀ τ ∈ X(k), w(τ) =
1

k + 2

∑
σ∈X(k+1),

τ⊂σ

w(σ).

One can also define the measure on the links by taking marginals as follows,

∀σ ∈ Xτ , wτ (σ) =
w(τ ∪ σ)(|τ |+|σ|
|τ |

)
w(τ)

.
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Cochains: The space of k-cochains denoted as Ck(X,R) := {f : X(k) → R} is a vector space
with an inner product defined as ⟨f, g⟩w =

∑
σ∈X(k)w(σ)f(σ)g(σ). We will denote it simply as Ck

when there is no ambiguity in the underlying complex.

Definition 2.2 (Up-Down Operators). For each k < d, we define the following pair of adjoint
operators between Ck and Ck+1.

(Up-Operator) P↑
k : Ck → Ck+1 . Let f be a function that is defined on (k + 1)-face, i.e,

f ∈ Ck. The up operator lifts it to a function on (k + 2)-faces by averaging over all subsets of size
k + 1. More formally,

P↑
k f(σ) = E

τ∼X(k)
τ⊂σ

[f(τ)] =
1

k + 2

∑
τ∼X(k)
τ⊂σ

f(τ)

(Down-Operator) P↓
k : Ck+1 → Ck. Analogously, one can transform a function on k + 2 faces

to one on k + 1 faces by averaging over all (k + 2)-sized faces containing a given (k + 1)-face.

P↓
k f(τ) = E

σ∼X(k+1)
τ⊂σ

[f(σ)] =
∑

τ∈X(k+1)
τ⊂σ

wτ (σ)f(σ)

By composing these two operators appropriately, we can define two kinds of walks at level k.

• (Up-Down Chain) This walk corresponds to the following random process. Start from τ ∈
X(k). In the up-step, we sample a random j such that τ ∪ {j} ∈ X(k+1); the probability of
picking j is proportional to w(τ ∪ {j}). Then in the down step, we drop a uniform element
of τ ∪ {j}.

P∧
k : Ck → Ck, P∧

k = P↓
k+1P

↑
k+1.

This walk has a lazy component as there is a 1
k+2 chance of returning to τ . To avoid this, we

define the non-lazy version P̃∧
k by subtracting the identity component,

P̃∧
k : Ck → Ck, P∧

k =
k + 1

k + 2
P̃∧
k +

1

k + 2
I.

• (Down-Up Chain) Similarly, we can first remove a uniformly random element i from τ first
and then add an element j with probability proportional to the weight of the resulting set
w(τ ∪ {j} \ {i}),

P∨
k : Ck+1 → Ck+1, P∨

k = P↑
k+1P

↓
k+1.

Remark 2.3 (Glauber dynamics). For a spin system, the down-up chain P∨
n−1 for the appropriate

simplicial complex is equivalent to the Glauber dynamics. A spin system is defined on a graph
G = (V,E) and the Gibbs distribution µ has support Ω ⊂ {1, . . . , q}V for integer q ≥ 2. The
elements of the corresponding simplicial complex are (vertex, spin) pairs (v, σ(v)) where v ∈ V and
σ(v) ∈ {1, . . . , q}.

Let us illustrate the above for the special case of independent sets (this is the hard-core model
with λ = 1); here the Gibbs distribution is uniformly distributed over all independent sets (of any
size) of G. The corresponding simplicial complex has dimension n = |V |; for every independent set
I we have {(v, 1) | v ∈ I} ∪ {(v, 0) | v ̸∈ I} in X(n− 1). The Glauber dynamics which updates the
spin at a randomly chosen vertex is equivalent to P∨

n−1.
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We are now ready to define the notion of spectral expansion for a simplicial complex. Let
τ ∈ X(k) for k ≤ d − 2. The 1-skeleton of Xτ is the weighted graph Gτ = (Xτ (0), Xτ (1)). The
weight of vertices (or edges) in Gτ are obtained by taking the weights in X and dividing by w(τ).
Note that the sum of the weights of all the vertices (or edges) in Gτ is 1. The eigenvalues of Gτ are
solutions of Ax = λDx where A is the weighted adjacency matrix and D is a diagonal matrix with
vertex weights; the weight of a vertex is the sum of the weights of the adjacent edges, this follows
from the above definition of vertex/edge weights.

Definition 2.4 (λ-local spectral expanders). A pure d-dimensional simplicial complex X is a λ-
local spectral expander if for every τ ∈ X(k) such that k ≤ d− 2, the 1-skeleton of Xτ , which is the
weighted graph Gτ = (Xτ (0), Xτ (1)), satisfies λ2(Gτ ) ≤ λ.

Local walk: We refer to the random walk P̃∧
0 on the 1-skeleton of Xτ as the local walk. Note

that the spectrum of the local walk on Xτ is the same as the spectrum of Gτ .

2.3 The Trickle-down theorem

Theorem 2.5 (Oppenheim [Opp18]). If X is a pure simplicial complex such that

(i) Its 1-skeleton is connected,

(ii) ∀v ∈ X(0), λ2(Xv(0), Xv(1)) ≤ λ,

then, X is a λ
1−λ -local spectral expander.

Corollary 2.6 (Trickle with loss). If X is d-dimensional and all (d − 2)-links are λ-expanders,
then X is a λ

1−(d−2)λ -local spectral expander.

Corollary 2.7 (Trickle without loss). If X is d-dimensional and all (d − 2)-links are 0-local ex-
panders, then X is a 0-local spectral expander.

2.4 Proof of Trickle-Down

The goal is to show that if λ2(Xv) ≤ λ for every v ∈ X(0), then, we have λ2(X) ≤ λ
1−λ . To do so,

we will need a way to study functions locally and the key notion we will use here will be that of
restriction.

Restriction: Let τ ∈ X(i) and let f ∈ Ck. We define the restriction of f to Xτ , f
τ ∈ Ck(Xτ ,R),

to be f τ (σ) = f(σ). Note that here, σ ∈ Xτ (k) which means that σ ∪ τ ∈ X(i+ k + 1) and by the
downward closed property, σ ∈ X(k) and therefore f τ is well-defined.

We wish to bound the second largest eigenvalue of the (weighted) adjacency operator on the
(global) graph G = (X(0), X(1)). This operator, which we denote as P̃∧

0 , can be seen as the non-
lazy part of the up-down operator from vertices to edges and back to vertices. More formally, the
up-down operator is P∧

0 = P↓
1P

↑
1 : C

0 → C0 which decomposes as P∧
0 = 1

2 P̃
∧
0 + 1

2I.

Lemma 2.8 (Restriction Lemma). For a d-dimensional simplicial complex X, cochains f, g ∈
Ck(X,R) and 0 ≤ i ≤ d− k − 2, we have,

1. ⟨f, g⟩ = Eτ∈X(i)[⟨f τ , gτ ⟩],
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2.
〈
P̃∧
0 f, g

〉
= Ev∈X(0)[

〈
P̃∧
0,vf

v, gv
〉
].

Proof. Exercise.

Now, we will prove the trickle-down theorem. Let f ∈ C0 be an eigenfunction perpendicular to
the constant function, that is, (M ′

0)
+f = µf and ∥f∥ = 1. We will bound µ in terms of the local

spectral expansion λ.

Proof of Trickle-down.

µ =
〈
P̃∧
0 f, f

〉
= E

v∈X(0)

[〈
P̃∧
0,vf

v, fv
〉]

Restriction Lemma

= E
v∈X(0)

[[〈
P̃∧
0,vf

v⊥, fv⊥
〉
+

〈
P̃∧
0,vf

v∥, fv∥
〉]]

≤ E
v∈X(0)

[[
λ
∥∥∥fv⊥

∥∥∥2 + ∥∥∥fv∥
∥∥∥2]] Using local expansion

≤ λ E
v∈X(0)

[
∥fv∥2

]
+ (1− λ) E

v∈X(0)

[∥∥∥fv∥
∥∥∥2] . ∥∥∥fv⊥

∥∥∥2 = ∥fv∥2 −
∥∥∥fv∥

∥∥∥2
We can bound the second term using the following observation,∥∥∥fv∥

∥∥∥ = | ⟨fv,1v⟩ | =
∣∣∣∣ E
(u,v)∈X(1)

[fv(u)]

∣∣∣∣ = |P̃∧
0 f(v)|. (2.1)

Here, 1v denotes the constant all-ones function in C0(Xv,R).

µ ≤ λ E
v∈X(0)

[⟨fv, fv⟩] + (1− λ) E
v∈X(0)

[
|P̃∧

0 f(v)|2
]

Using Eq. (2.1)

≤ λ ⟨f, f⟩+ (1− λ)
∥∥∥P̃∧

0 f
∥∥∥2 Using Restriction lemma

= λ ∥f∥2 + (1− λ)µ2 ∥f∥2 .

Solving this finishes the proof,

µ ≤ λ+ (1− λ)µ2

µ− µ2 ≤ λ(1− µ2)

µ ≤ λ(1 + µ)

µ ≤ λ

1− λ
.

2.5 Random Walk Theorem

Today we will give a proof of the spectral gap of the random walks. Recall the following definitions
from the first lecture. Recall the up-down operators from Definition 2.2. We wish to prove rapid
mixing of the walks at level k.
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Theorem 2.9 (Convergence of RW in local-spectral expander [KM17, DK17, KO20]). If X is a
pure d-dimensional simplicial complex which is a γ-local spectral expander, then for any 1 ≤ k ≤ d,

λ2(P
∨
k ) ≤ 1− 1

k + 1
+O(γk).

Theorem 2.10 ([AL20]). If X is a (λ−1, · · · , λd−2)-local spectral expander where γj = 1−maxτ∈X(j) λ2(Xτ ),
then for any 1 ≤ k ≤ d,

λ2(P
∨
k ) = λ2(P

∧
k ) ≤ 1− 1

k + 1

k−2∏
i=−1

γi.

Localization Given a global function, we wish to define a local function on the links. Let
f ∈ Ck, σ ∈ X(i). We define fσ : Xσ(k − i) → R as fσ(τ) = f(σ ∪ τ).

Example 2.11. Let f ∈ C1, i.e., a function on edges. For a vertex v, we have fv(u) = f((u ∪ v))
where u ∈ Xv(0). Therefore, fv ∈ C0(Xv,R)

This differs from the restriction we saw yesterday as the restriction of f gives a local function
fv ∈ C(Xk

τ ) whereas the localization is fv ∈ C(Xk−i
τ ). While restriction worked well with trickle

down, localization is better suited for Garland’s method.

Lemma 2.12 (Localization). Let f, g ∈ Ck. We have that,

1. ⟨f, g⟩ = Eσ∈X(i)[⟨fσ, gσ⟩],

2.
〈
P̃∧
k f, f

〉
= Ev∈X(0)[

〈
P̃∧
k−1,vfv, fv

〉
].

Proof. Proof not provided in the lecture.

Properness: A cochain f ∈ Ck is an i-level co-chain if f ∈ ker(P↓
i−1 · · ·P

↓
k−1). We denote this

subspace as Ck
i . We say that f ∈ Ck

i is a proper i-level co-chain if f ∈ Im(P↑
k−1 · · ·P

↑
i ). Essentially,

every function at level i is also in i− 1. Whereas a proper level i function is one not in level i+ 1.

Lemma 2.13 (Orthogonal Decomposition). Every f ∈ Ck can be represented as f =
∑

i f
i such

that f i is proper i-level cochain and
〈
f i, f j

〉
= 0 whenever i ̸= j.

Proof. Proof not given in the lecture.

Before we prove the main theorem, we make the following observation about the localization of
a cochain f .

Claim 2.14 (Localization Properties). Let f ∈ Ck with the decomposition f =
∑

i f
i, f i ∈ Ck

i and
v ∈ X(0). Then,

• f⊥
v =

(∑k
i=1 f

i
)
v
+ (f0

v )
⊥ and (fv)

∥ = (f0
v )

∥.

• Let fv,i := (fv)
i. Then, for i > 0, fv,i = f i+1

v and fv,0 = f1
v + f0⊥

v .
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Proof. We wish to show that for any i > 0, (f i)⊥v = (f i)v which is equivalent to saying that〈
(f i)v,1v

〉
= 0 where 1v is the constant function on the link Xv. Let Iv ∈ C0 be the function that

is Iv(x) = 1 iff x = v. Now, it is easy to see that P↑
k−1 · · ·P

↑
0Iv = 1v. Now,〈

f i
v,1v

〉
=

〈
f i
v,P

↑
k−1 · · ·P

↑
0Iv

〉
=

〈
P↓
0 · · ·P

↓
k−1f

i
v, Iv

〉
= ⟨0, Iv⟩ .

The last equality uses the definition of an i-level cochain.

Theorem 2.15 (Decomposition Theorem). Let f ∈ Ck and decompose f =
∑

i f
i where f i ∈ Ck

i .
Then,

〈
P∨
k f, f

〉
≤

k∑
i=0

λϕ,i,k

∥∥f i
∥∥2 + ∑

i ̸=j

cij
〈
f i, f j

〉
︸ ︷︷ ︸
Mixed Terms (MT)

≤ λϕ,0,k ∥f∥2 +MT.

where λϕ,i,k = 1− 1
k+1−i

∏k−1
j=i−1(1− λj) and λj = maxτ∈X(j) λ2(Xτ ).

Proof sketch: The proof is quite similar to that of the Trickle Down Theorem from the previous
lecture wherein we decompose the inner product as a sum over the perpendicular and parallel
components of the local cochains fv. The perpendicular part is easily bounded (as earlier) using
the inductive hypothesis on the links Xv. We make the following notation to make the induction
easier.

λv,i,k := 1− 1

k + 1− i

k−1∏
j=i−1

(1− λv,j) and λv,j = max
τ∈Xv(j)

λ2(Xτ )

The parallel part is handled using the “advantage lemma” Lemma 2.16 which can be seen as
the technical core of the result.

Proof. We proceed by induction on k.

Base Case: When k = 0,
〈
P̃∧
0 f, f

〉
≤ λ−1 ∥f∥2 = λϕ,0,0 ∥f∥2.

Inductive Case:〈
P̃∧
k f, f

〉
= E

v∈X(0)

[〈
P̃∧
k−1,vfv, fv

〉]
Localization Lemma

= E
v∈X(0)

[〈
P̃∧
k−1,vf

⊥
v , f⊥

v

〉]
+ E

v∈X(0)

[〈
P̃∧
k−1,vf

∥
v , f

∥
v

〉]
= E

v∈X(0)

[〈
P̃∧
k−1,vf

⊥
v , f⊥

v

〉]
︸ ︷︷ ︸

A

+ E
v∈X(0)

[〈
f0∥
v , f0∥

v

〉]
︸ ︷︷ ︸

B

. Using Claim 2.14

Since f⊥
v is a cochain in Ck−1(Xv,R), we can use the inductive hypotheses to obtain,
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〈
P̃∧
k−1,vf

⊥
v , f⊥

v

〉
≤

k−1∑
j=0

λv,j,k

∥∥∥(f⊥
v )j

∥∥∥2 +MT

From Claim 2.14, we know that for j > 0, the j-level cochain of f⊥
v are the same the localization

of the j + 1-level cochain of fv, i.e., is (f
⊥
v )j = (f j+1)v. Plugging this in,

k−1∑
j=0

λv,j,k

∥∥∥(f⊥
v )j

∥∥∥2 = λv,0,k

∥∥∥(f0
v )

⊥ + f1
v

∥∥∥2 + k−1∑
j=1

λv,j,k

∥∥f j+1
v

∥∥2 (2.2)

≤ λv,0,k

∥∥f0
v

∥∥2 + k−1∑
j=0

λv,j,k

∥∥f j+1
v

∥∥2 . (2.3)

Now we will use the observation that λϕ,i,k ≥ λv,i−1,j for any v ∈ X(0) and j ≤ k. Moreover, by

localization lemma (Lemma 2.12), we get Ev[
∥∥∥f j

v

∥∥∥2] = ∥∥f j
∥∥2. The term (A) then can be bounded

as

(A) ≤ λϕ,1,k

∥∥f0
∥∥2 + k−1∑

j=1

λϕ,j,k

∥∥f j
∥∥2 .

Lemma 2.16 (Advantage lemma).

E
v∈X(0)

[∥∥∥f0∥
v

∥∥∥2] ≤
(
1− k

k + 1
(1− λ−1)

)∥∥f0
∥∥2 .

Proof. Proof not provided in the lecture. See [GK22, Lemma 7.8].
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