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ABSTRACT

Expanders are sparse yet well-connected graphs with numerous theoretical and practical

uses. Symmetry is a valuable structure for expanders as it enables efficient algorithms

and a richer set of applications. This thesis studies expanders with symmetry, giving new

constructions and applications.

We extend expander construction techniques to work with symmetry and give explicit

constructions of expanders with varying quality of expansion and symmetries of various

groups. In particular, we construct graphs with large Abelian group symmetries via the

technique of graph lifts. We also give a generic amplification procedure that converts a

weak expander to an almost optimal one while preserving symmetries. This procedure

is obtained by generalizing prior amplification techniques that work for Cayley graphs

over Abelian groups to Cayley graphs over any finite group. In particular, we obtain

almost-Ramanujan expanders over every non-abelian finite simple group.

We then explore the utility of having both symmetry and expansion simultaneously.

We obtain explicit quantum LDPC codes of almost linear distance and good classical

quasi-cyclic codes with varying circulant sizes using prior results and our constructions

of graphs with Abelian symmetries. We show how our generic amplification machinery

boosts various structured expander-like objects: quantum expanders, dimension expanders,

and monotone expanders. Finally, we prove a structural result about expanding Cayley

graphs, showing that they satisfy a “degree-2” variant of the expander mixing lemma. As

an application of this, we give a randomness-efficient query algorithm for homomorphism

testing of unitary-valued functions on finite groups and a derandomized version of the

celebrated Babai–Nikolov–Pyber (BNP) lemma.

x



CHAPTER 1

INTRODUCTION

One of my personal beliefs is that fascination with symmetries and groups is one way

of coping with frustrations of life’s limitations: we like to recognize symmetries which

allow us to recognize more than what we can see.

Pierre de la Harpe, Topics in Geometric Group Theory

Graphs are structures that capture pairwise relations between elements of a set, and

many real-world tasks can be modeled as a graph-theoretic problem. Computer scien-

tists are often interested in developing primitives such as error correction algorithms or

cryptographic schemes. A successful approach to many of these constructions requires

designing graphs with special properties.

One such property is that of expansion, a major development in theoretical computer

science over the past few decades that has led to numerous algorithmic advances, lower

bounds in complexity theory, and a lot more (see [HLW06] for a comprehensive survey).

Expansion is the magical property of being sparse yet very well-connected, and the quest

to construct expander graphs has led to structural results in pure mathematics [Lub12].

Symmetry is often a desirable property for any object, and the study of graphs with

symmetry can be motivated by at least two different streams of research. One is the topic

of geometric group theory, an approach to understanding groups via the spaces it acts on,

such as graphs. From a computer science perspective, one aims to utilize the symmetry

of graphs to improve graph-based constructions and algorithms. This thesis concerns

graphs with both expansion and symmetry, and addresses the following questions:

How can we explicitly construct expanders with given symmetries?

How can one utilize expanders with symmetries?
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These two properties have a synergistic relation, which makes studying them in con-

junction with each other fruitful. For instance, all known constructions of optimal (non-

bipartite) expanders (Ramanujan expanders) are highly symmetric constructed via group

theory. Moreover, symmetry enriches graph-based constructions, even when not nec-

essary. For example, error-correcting codes can be built from expanders without any

requirements on symmetry, and such codes have great error-correction capacity. How-

ever, if one requires the code to be locally testable—a property that enables very efficient

detection of errors—the only known way is via symmetry.

In the other direction, the study of symmetry, i.e., group theory, is also enriched by the

perspective of expansion. A Cayley graph, Cay(G, S), is a group-theoretic graph defined

using a group G and a subset S ⊆ G. This construction provides a link between graphs

and groups, and one can now ask questions like, which groups admit expanding Cayley

graphs? Studying such questions has not only led to expander constructions but has also

shed light on the properties of these groups. For instance, answering this question for

one class of groups¹ involved developing structural results in group theory like product

theorems, variants of Kazhdan’s property (T), the notion of quasirandomness, etc.

The second part of this thesis gives a few more concrete applications of such graphs.

Before we march on, let us formalize these terms. We will always work with an infinite

family of d-regular undirected graphs {Xi}i∈󳕷, where d is an absolute constant and the

size of the graphs grows with i. This ensures that the graphs are very sparse.

We will work with the spectral notion of expansion. For a graph X, λ(X) is the second

largest singular value of its normalized adjacency matrix, AX. We say that a family of

d-regular graphs, {Xi}i∈󳕷, is a (d, λ)-expander (or just λ-expander), if λ(Xi) ≤ λ for every

member Xi of the family. The smaller the expansion parameter λ, the more spectrally

expanding the family. The trivial bound is λ 󳓬 1, and we say a graph is an expander

1. The class of non-abelian finite simple groups.
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if λ < 1. This quality of expansion suffices for most applications. When working with

graphs where we need to analyze the dependence of λ on d, it can be more convenient to

work with the unnormalized eigenvalue, λu :󳓬 λ · d.

To formalize symmetry, first recall that a graph isomorphism is a permutation of the

vertices that preserves the graph structure. Namely, a bĳection σ : V → V such that (u, v)

is an edge if and only if (σ(u),σ(v)) is. Let Aut(X) be the group of all graph isomorphisms

of the graph X. We say that X has symmetries of G if G ⊆ Aut(X). In other words, G

acts on the graph, i.e., for each g ∈ G, we have a graph isomorphism ϕ(g) of X such that

ϕ(gh) 󳓬 ϕ(g)ϕ(h). The formal problem statement now is the following:

Question 1.0.1 (Expanders with Symmetry). Fix a family of groups {Gi}i, a positive integer d,

and a real number λ ∈ [0, 1). Give a deterministic polynomial-time algorithm that for each i ∈ 󳕷,

computes a d-regular graph, Xi such that λ(Xi) ≤ λ, and Gi ⊆ Aut(Xi).

A prominent application of expanders is in the area of pseudorandomness. Algorithms

often use randomness, a precious resource, and hence, the desire to reduce the amount of

randomness. Say that the algorithm computes a function f : G → 󳕬 by sampling random

inputs. We say that f is δ-fooled by a set S ⊆ G if,
󲷲󲷲󲷲 󳕮
x∼G

[f(x)] − 󳕮
x∼S

[f(x)]
󲷲󲷲󲷲 ≤ δ.

Thus, the function f can be approximated (in expectation) by the uniform distribution

over S instead of the uniform distribution over G. Sampling from S requires log(|S|) bits

of randomness, which can be much smaller than log(|G|) required to sample from G.

This question about groups, yet again, relates to graphs: Cay(G, S) is a λ-expander if

and only if S λ-fools all representations ofG. This equivalence poses an interesting question:

Question 1.0.2 (Pseudorandomness of Symmetric Expanders). Let G be a finite group and

S ⊆ G such that Cay(G, S) is a λ-expander. Determine the set of functions, f : G → 󳕬 that are

δ(λ)-fooled by S, i.e.,
󲷲󲷲 󳕮x∼G[f(x)] −󳕮x∼S[f(x)] 󲷲󲷲 ≤ δ(λ).

3



1.1 Technical overview

We now present an impressionistic sketch of a few essential concepts and techniques this

thesis deals with.

Cayley Graphs A natural way to have symmetry of a group G is to have the graph’s

vertex set be G. The action then is merely by (left) group multiplication. Since this action

is a group isomorphism, we get that (g,h) is an edge if and only if (1,g−1
h) is. Thus, the

graph is determined by the edges going out of the identity element, 1. This construction

is called the Cayley graph, denoted as Cay(G, S). Here, S ⊆ G is a symmetric multiset,

denoting the neighbors of 1. Thus, g,h ∈ G are adjacent if and only if g−1
h belongs to S.

The set S is called the generating set, as S generates G as a group.

Group-based Graph Lifts One can generalize the above construction by having V 󳓬

V0 × G, where the action is merely on G. In this setup, one has many more choices. In

particular, one can first pick E0 ⊆ V0 × V0 arbitrarily, and then for each (u, v) ∈ E0, pick a

subset Su,v ⊆ G. Then, the edges are E 󳓬 {((u,g), (v,h)) | (u, v) ∈ E0, g
−1
h ∈ Su,v}. As we

wish to vary the family of groups {Gi}, this graph can be seen as the lift of a base graph

X0 󳓬 (V0,E0). Moreover, we wish to preserve the degree, and so, Su,v is a singleton². Thus,

we can generate {Xi}i where Vi 󳓬 V0 × Gi and the edges are defined using the signing

function s : E0 → Gi that maps (u, v) 󰀁→ {s(u, v)} 󳓬 Su,v.

Bootstrapping Expansion In the above constructions, the graph depends on the choice

of the generating set S, or the signing function. It is pretty challenging to build a generating

set from scratch (even randomly) that yields an expander, and most techniques use deep

results from number theory and representation theory [LPS88, Mar88, Mor94]. Com-

2. One only needs Su,v to be constant-sized. However, requiring it to be a singleton is not without loss
of generality as we can replace the edge (u, v) with multiple copies, which has the same effect.
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binatorial techniques [RVW00, BL06, BATS08, MOP20, OW20, Alo21] start with a weak

expander and amplify it—either in size or quality—which is significantly easier. However,

these amplification operations do not preserve any algebraic structure, as they are focused

only on expansion. One key contribution of this thesis is to utilize these combinatorial

techniques to amplify expansion while preserving algebraic structure, i.e., symmetry. For

example, to improve the expansion of a Cayley graph Cay(G, S), we are not allowed to

modify the graph arbitrarily but only to change S. This preserves the Cayley structure

and, thus, the symmetries of G.

Spectral norm and its non-abelian analog The ℓ1-norm of the Fourier transform of a

function is known as its spectral norm. Spectral norm has emerged as an important quantity

for the analysis of Boolean functions, i.e., functions over 󳖃n2 . In particular, functions with

low spectral norm have a lot of structure [STV17]: they admit small decision trees, parity

decision trees, they are easily learnable, etc. One of the contributions of this thesis is to

study the non-abelian analog of this norm from the perspective of pseudorandomness. A

first generalization one can think of would be a similar ℓ1 norm of the Fourier coefficients.

However, it turns out that the appropriate generalization of the spectral norm is the Fourier

algebra norm. This was suggested earlier by Sanders [San21], who used it to generalize the

quantitative idempotent theorem. This norm has multiple equivalent definitions, but our

key idea is to use the following harmonic analytic reformulation due to Eymard [Eym64],

󰀂f󰀂A 󳓬 min
(π,V)

󰀋
󰀂u󰀂 · 󰀂v󰀂

󲷲󲷲 f(x) 󳓬 〈u,π(x) v〉
󰀌
,

where u, v ∈ V , and (π,V) is a representation of G, i.e., π : G → 󳕾V is a homomorphism

from the group G to the group of unitary operators on the complex Hilbert space V .

It is well-known that any function, f, on an Abelian group is ε󰀂f̂󰀂1-fooled by any ε-

biased set. We show that this neatly generalizes to any finite group via the Fourier algebra

norm, i.e., any function, f, on a finite group is ε󰀂f󰀂A-fooled by any ε-biased set.
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1.2 Key Contributions

1.2.1 Expanders with Abelian Symmetries via Lifts

Using group-based graph lifts, we construct expanders with large Abelian symmetries.

For this result, we use the eigenvalue of the unnormalized adjacency matrix, λu(X).

Theorem 1.2.1 (Explicit Abelian Lifts). For large enough n and constant degree d ≥ 3, given

an abelian group G, and any fixed constant ε ∈ (0, 1), we can construct a d-regular graph X on

Θ(n|G|) vertices, in deterministic polynomial time, such that,

1. X is G-lift of a graph X0 on Θ(n) vertices. Thus, G ⊆ Aut(X).

2. If |G| ≤ exp
󰀃
nδ(d,ε)󰀄 , then λu(X) ≤ 2

√
d − 1 + ε.

3. If |G| ≤ exp
󰀃
nδ

󰀄
and also d ≥ d0(ε), then λu(X) ≤ ε · d.

4. If |G| ≤ exp
󰀓
cnd−

1
2
󰀔
, then λu(X) ≤ O(

√
d logd).

5. If |G| 󳓬 exp
󰀃
cndδ

󰀄
for δ ∈ [−1/2, 1), then λu(X) ≤ O

󰀃
d

2+δ
3 logd

󰀄
.

This result is proved in two parts using different proof techniques. In Chapter 2, we give

a simple proof via discrepancy by utilizing the work of Bilu and Linial [BL06]. This gives

an algorithm that runs in time poly(2n, |G|) which is efficient when |G| 󳓬 2Ω(n). To tackle

smaller lifts, we use the trace method in Chapter 3, generalizing the results of [MOP20] for

G 󳓬 󳖃2. This gives the above result for the sub-exponential sizes (regimes 2 and 3 above).

1.2.2 Expanders with non-Abelian Symmetries via Amplification

Any infinite family of d-regular expanders satisfies, 2
√
d − 1 − o(1) ≤ λu(X), the Alon-

Boppana bound [Nil91]. Graphs that achieve this bound are called Ramanujan graphs,

which are optimal expanders in this spectral sense. We will use the normalized eigenvalue

and refer to the weaker bound of d ≤ O
󰀃
λ
−1
2 +o(1)󰀄 , as almost Ramanujan.
6



We give a generic amplification procedure that converts a weak expander to an almost

Ramanujan one while preserving symmetries. The key technical result is to establish such

an amplification for Cayley graphs over arbitrary finite groups,

Theorem 1.2.2 (Amplifying Cayley Graphs). Let G be a finite group and S be such that

Cay(G, S) is a λ0-expander, for some constant λ0 ∈ (0, 1). For every λ ∈ (0, 1), there exists S′ such

that,

• Cay(G, S′) is a λ-expander.

• |S′| 󳓬 O
󰀓
|S|/λ2+oλ(1)

󰀔
, and

• S′ can be computed deterministically in poly(|S|/λ)-time assuming an oracle for group

operations.

Furthermore, if Cay(G, S) is strongly explicit³, then so is Cay(G, S′).

Breuillard and Lubotzky [BL22] ask whether having near-Ramanujan expanders for

all families of non-abelian finite simple groups is possible. Theorem 1.2.2 makes progress

towards this question (the o(1) term needs to be removed to resolve it completely). In-

terestingly, the above result for Cayley graphs implies an expansion result for general

families of (regular) expander graphs. The key idea is to use a result of König that says

that the adjacency matrix, say AX, of an arbitrary regular graph, can be written as a sum

of permutation matrices. This gives the following,

Theorem 1.2.3 (Amplifying General Expanders). Let {Xi}i∈󳕷 be a family of (d0, λ0)-expanders

where λ0 < 1 is a constant. For any (target) λ ∈ (0, 1) and Xi, we can explicitly󰑖 construct a

(d, λ)-expander, X′
i
, on the same vertex set, where d 󳓬 O(d0/λ2+oλ(1)). Moreover, the construction

is local in the sense that edges in X′
i

correspond to short walks in Xi.

3. Neighbors of a vertex can be computed in time polynomial in the description length of a vertex.

4. See Definition 1.3.6
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1.2.3 Applications of Expanders with Symmetries

The second part of the thesis explores how one can use these symmetric expanders to

design randomness-efficient algorithms and construct other interesting pseudorandom

objects. We do not state the theorems formally here, as they require many new definitions.

In Chapter 5, we look at useful corollaries of our symmetric expander constructions.

We start with the original motivation to embark on this topic, constructing large-distance

quantum error-correcting codes. We will see how our construction of graphs with abelian

symmetry (Theorem 1.2.1) plugs into the machinery of Kalachev and Panteleev [PK21]

to yield explicit quantum codes with almost linear distance. We then explore the am-

plification of various structured expander-like objects, like quantum expanders, via our

amplification of Cayley graphs (Theorem 1.2.2).

In Chapter 6, we address Question 1.0.2 and show that a Cayley expander over G

can fool functions f : G → 󳕬t×t with small algebra norm. This leads to a randomness-

efficient query algorithm for testing if a function to t × t unitary matrices, f : G → 󳕾t,

is a homomorphism. Prior algorithms sample a uniformly random pair (x,y) and test

if f(xy) 󳓬 f(x)f(y), which is the homomorphism property. This uses 2 log |G| bits of

randomness, and our contribution is to reduce this by showing that one can instead

sample a pair using edges of a Cayley expander over G. This reduces the randomness to

log |G| + log |S| which is (1 + o(1)) log |G|, i.e., almost optimal.

The main technical contribution is to show that expanding Cayley graphs satisfy a

“degree-2” variant of the expander mixing lemma (EML). This degree-2 EML also gives a

derandomized version of the Babai–Nikolov–Pyber (BNP) lemma.
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1.3 Preliminaries

Operators

We will mostly work with operators over finite-dimensional Hilbert spaces, i.e., vector

spaces with an inner product. However, in Section 5.2.6, we will work with infinite-

dimensional spaces, and thus, we provide general definitions.

Definition 1.3.1 (Spectrum). For an operator T , define, Spec(T ) 󳓬 {λ | (T−λI) is invertible}.

We define the spectral radius ρ(T ) 󳓬 maxλ∈Spec(T ) |λ|. When the spectrum is discrete, i.e.,

Spec(T ) 󳓬
󰀋
|λ1(T )| ≥ · · · ≥ |λn(T )|

󰀌
, define ρ2(T ) 󳓬 |λ2(T )|.

Definition 1.3.2 (Operator Norm). Let H,H′ be Hilbert spaces with norms induced from

their respective inner products. For any bounded linear operator T : H → H′, we define,

󰀂T 󰀂op 󳓬 sup
v∈H

󰀂Tv󰀂
󰀂v󰀂 󳓬 sup

v∈Hw∈H′

|〈Tv,w〉 |
󰀂v󰀂󰀂w󰀂 .

Alternatively, 󰀂T 󰀂2op 󳓬 ρ
󰀃
TT ∗

󰀄
where T ∗ is the adjoint of T.

Graphs and Spectral Expanders

Throughout this thesis, we will use X 󳓬 (V ,E) to denote an n-vertex d-regular undirected

multigraph for some d ≥ 1. We denote by AX the normalized adjacency matrix of X.

Definition 1.3.3 (λ-spectral Expander). We say thatX is aλ-spectral expander ifρ2(AX) ≤ λ.

We will use the notation λu(X) 󳓬 ρ2(A′
X
) where A′

X
is the unnormalized adjacency matrix.

Lemma 1.3.4 (Expander Mixing Lemma). Let S, T be subsets of the vertices of a d-regular

graph. Define E(S, T ) 󳓬 {(x,y) ∈ E | x ∈ S, y ∈ T }. Then,
󲷲󲷲󲷲|E(S, T )| − d|S| |T |

n

󲷲󲷲󲷲 ≤ λu(G)
󰁳
|S| |T |.
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Definition 1.3.5 (Cayley Graph). Let G be a finite group and S ⊆ G be a generating set

such that if s ∈ S, then s
−1 ∈ S. Then, Cay(G, S) is an undirected graph with vertex set G,

and (g,h) ∈ E if and only if gh−1 ∈ S.

Definition 1.3.6 (Explicit graph). A family of graphs {Xi}i∈󳕷 is said to be explicit if the

adjacency matrix of Xi can be computed deterministically in poly(|Xi |)-time. Moreover, it

is said to be strongly explicit if the list of its neighbors of any vertex in Xi can be computed

poly(log |Xi |)-time.

Group Representations and Small-Bias sets

For finite groups, every representation can be made unitary; thus, studying these suffices.

Let V be a complex Hilbert space and denote by UV , the unitary group of operators acting

on V .

Definition 1.3.7 (Unitary Group Representation). For a group G, a unitary representation

is a pair (ρ,V) where ρ : G → UV is a group homomorphism, i.e., for every x,y ∈ G, we

have ρ(xy) 󳓬 ρ(x)ρ(y). A representation is irreducible if the only subspaces of V that are

invariant under the action of ρ(G) are the empty space, {0}, and the entire space, V .

For a representation (ρ,V), will use dρ to denote dim(V). We use 󰁥G to denote the

set of all irreducible representations (irreps) of a group G. Every group has two special

irreducible representations:

• The trivial representation, (ρtriv,󳕬), where ρ(g) 󳓬 1 for every group element g ∈ G.

• The regular representation, (ρreg,󳕬[G]) where ρ(g) eh 󳓬 egh for every g,h ∈ G.

The following is a fundamental result that states that every representation decomposes as

a finite sum of irreducible ones.
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Theorem 1.3.8 (Maschke). LetG be a finite group and let (π,V) be any representation ofG. Then,

V 󳓬 ⊕iVρi , i.e., it decomposes as a direct sum of irreducible representations {ρi}i. Explicitly, there

exists a unitary transformation Uπ such that UππU
∗
π is block-diagonal with each block being ρi.

Fact 1.3.9 (Decomposing the Regular Representation). For any finite group G, the regular

representation contains all irreps, with multiplicity exactly dρ, i.e., 󳕬[G] 󳓬 ⊕
ρ∈󰁥GVdρ

ρ .

Small–bias sets and Pseudorandomness For a group G, small-bias sets are multisets (or

distributions), S ⊆ G that fool all non-trivial irreducible representations. Small bias sets

over Abelian groups were introduced in the pioneering work of Naor and Naor [NN93]

and are a fundamental derandomization tool widely used across domains like complexity

theory, coding theory, learning theory, graph theory, etc.

Definition 1.3.10 (ε-Biased Set). Let ε ∈ [0, 1). We say that a multiset S ⊆ G is ε-biased if

for every irreducible representation ρ, ρ is ε-fooled by S, i.e., 󰀂󳕮s∼S[ρ(s)]󰀂op ≤ ε.

Fact 1.3.11. A multiset S ⊆ G is an ε-biased set if and only if the Cay(G, S) is an ε-expander.

Proof. The normalized adjacency matrix is AX 󳓬 󳕮sρreg(s). Now apply Theorem 1.3.8

and Fact 1.3.9. □
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CHAPTER 2

GRAPH LIFTS VIA DISCREPANCY

Laqa: Question for you, Piro. I give you a sparse binary matrix, A, and randomly flip

each 1 to a −1. Now, give me a bound on the eigenvalue of this signed matrix.

Piro: Okay, so it is a Bernoulli sum of matrices. What if I apply Matrix Chernoff?

Laqa: That is good but not good enough! You get bounds depending on the dimension

of the matrix, but I need dimension-independent bounds.

Piro: For dimension independence I need more information aboutA. What is the context?

Laqa: A is the adjacency matrix of an expander, and this random matrix is what you get

when you analyze a random 2 lift.

Piro: In that case, the expander mixing lemma tells you that there are many edges across a

cut, so you can get Chernoff-like concentration foru⊺Avwhereu, vdenote indicators

of sets. And then, try to take a union bound.

Laqa: Interesting, but I need a bound on this Rayleigh quotient for all real vectors.

Piro: That is what ε-nets are for! Take a look at the original paper of Bilu and Linial.

2.1 Introduction to Graph Lifts

Let X 󳓬 (V ,E) be a graph and assume that we have an ordering on V and, by convention,

(u, v) ∈ E if u ≤ v. Let Ed denote the set of directed edges i.e. Ed 󳓬
󳕒

(u,v)∈E{(u, v), (v,u)}.

For a group G, a G-signing is a function s : Ed → G such that s(v,u) 󳓬 s(u, v)−1.

14



Definition 2.1.1 (G-lift of a graph). Given a G-signing of an undirected graph X 󳓬 (V ,E),

the lifted graph X(s) 󳓬 (V′,E′) is a graph on |G| copies of the vertices V′ 󳓬 V × G where

for every edge (u, v) ∈ Ed we have ((u, i), (v, s(u, v)·i)) ∈ E′.

A lift is called random if the signing function is defined at random, i.e., for each

(u, v) ∈ E, we assign s(u, v) uniformly at random from G. The following matrix is crucial

in the analysis of lifted graphs.

Definition 2.1.2 (Signed matrix). Let A be the adjacency matrix of a graph X. For a

character χ : G → 󳕬, define

A(χ)(u, v) :󳓬 A((u, v))χ(s(u, v)) .

The signed matrix has χ(s(u, v)) in place of every non-zero entry, i.e., edge (u, v) in X.

We will restrict to analyzing abelian groups G, and for concreteness, the reader can

always think of the group as G 󳓬 󳖃ℓ, i.e., the cyclic group. Group-based lifts have three

properties that make it useful for expander constructions:

1. Degree — The degree of the base graph is preserved.

2. Symmetry — The group G acts as on the lifted graph as g·(u,h) 󳓬 (u,h · g−1 ) .

3. Explicit Spectrum — Using Theorem 1.3.8 and Fact 1.3.9 one can deduce that the

eigenvalues of the lifted graph are Spec(A(s)) 󳓬 󳕒
χ∈Ĝ Spec(A(χ)). Thus, the lifted

graph inherits the spectrum of the base graph (when χ is trivial), and all the new

eigenvalues are given by the signed matrices corresponding to non-trivial characters.

Therefore, the expansion of the lifted graph is,

λ(X(s)) ≤ max
triv󲧰χ∈Ĝ

󰀋
λ(X), ρ(A(χ))

󰀌
.

2.1.1 Related Work

Most work in the literature focuses on unstructured lifts (just called lifts) as the goal is to

construct expanders without any symmetry requirement. An unstructured ℓ-lift is where
15



each vertex is replaced by ℓ-copies, and for every edge e 󳓬 (u, v) of X0, we add a matching

between the two sets of ℓ vertices corresponding to u and v.

There are broadly three main techniques to analyze graph lifts, both group-based

and unstructured. The techniques, as listed below, give progressively better expansion

guarantees but are also increasingly complex and apply in more restricted settings.

Discrepancy Amit and Linial [AL02] introduced random graph lifts in theoretical com-

puter science, and a sequence of works studied various properties of this random model

[ALMR01, AL06]. Eventually, Bilu and Linial [BL06] studied the spectral expansion of

2-lifts giving an explicit construction of graphs with expansion O(
√
d log1.5(d)) for every

degree. Agarwal, Chandrasekaran, Kolla, and Madan [ACKM19] refined the techniques

of [BL06], and showed that random 󳖃ℓ-lifts (also known as shift lifts) are expanding.

Theorem 2.1.3 ([ACKM19, Theorem 1.2]). Let X0 be a d-regular n-vertex graph, where 2 ≤

d ≤
󰁳
n/(3 lnn). Let X be a random 󳖃ℓ-lift of X0. Then, λu(X) 󳓬 O(λu(X0)) with probability

1− ℓ · e−Ω(n/d2). Moreover, for any abelian group G such that |G| ≥ exp(Oε(nd)), there does not

exist a G-lift of X0 such that λu(X) ≤ ε · d.

Trace Method The trace method was used by Friedman [Fri03] to prove that random

d-regular graphs are near-Ramanujan expanders with high probability. Inspired by a

simplified proof of this theorem by Bordenave [Bor20], Mohanty, O’Donnell, and Pare-

des [MOP20] gave the first explicit construction of near-Ramanujan, i.e., largest non-trivial

eigenvalue bounded by 2
√
d − 1 + ε, graphs of every degree. The key technique in their

work was a derandomization of the 2-lifts. Subsequently, Alon [Alo21] gave explicit con-

structions of near-Ramanujan expanders of every degree and every number of vertices.

The work in [MOP20] was also generalized to achieve finer spectral guarantees together

with local properties via unstructured ℓ-lifts in O’Donnell and Wu [OW20].
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Method of Interlacing Polynomial In a breakthrough work, Marcus, Spielman, and Sri-

vastava [MSS15] proved that bipartite graphs admit¹ a󳖃2-lift that preserves the spectrum,

implying the construction of bipartite Ramanujan expanders. They introduced a new

technique called the method of interlacing polynomials which has since been extended to

analyze G-lifts for 󳖃3, 󳖃4,󳖃5, and various non-abelian groups [HPS16]. One drawback is

that this method can only bound λ2 (or λn) but not ρ2(A) 󳓬 max(λ2, |λn |). Therefore, the

applicability of this method (in the context of expanders) is restricted to bipartite graphs.

Overview of the following two chapters We will utilize both methods to prove the

existence of an explicitG-lift. One can go through the proof of Theorem 2.1.3 in [ACKM19],

and derandomize it directly via expander walks. However, this chapter gives an alternate,

simple proof (albeit with a logarithmically weaker bound) via the discrepancy method.

This proof easily derandomizes via expander walks when the group is exponentially large

in the size of the base graph, i.e., |G| 󳓬 2Ω(n).

In Chapter 3, we turn to the trace method to derandomize smaller lifts. We will

extend the techniques of [MOP20]–who analyze 2-lifts–to much larger abelian G-lifts, for

3 ≤ |G| ≤ 2O(nδ), i.e., upto subexponential sized lifts.

2.2 Discrepancy Method

The discrepancy method bounds the spectral radius by analyzing the quadratic form

y
⊺
M x. This quadratic form is approximated by discretizing the space of vectors, i.e., 󳕻n,

and considering the form over Boolean vectors i.e., x,y ∈ {0, 1}n. The two main steps in

this method are: (i) bound the quadratic form over Boolean vectors, and (ii) prove that

such a bound implies a bound over the space of real vectors (with some loss). The second

step can be seen as a converse to the expander mixing lemma and was proved in a general

1. It is an existential result, it is unknown if random lifts are Ramanujan with high probability.
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setting by Bilu and Linial (Theorem 2.2.2). Therefore, this chapter will focus on proving

the bound on the discretized quadratic form. We will study two settings, the first with

uniformly random signings and the second with signings via expander walks. This yields

an explicit construction of expanding graphs with exponential lift size.

Theorem 2.2.1 (Exactly Exponential Lifts). For any positive integer n and every constant

degree d ≥ 3, given the generating elements of an abelian group G, there exists a deterministic

poly(exp(n), |G|) time algorithm that constructs a d-regular graph X on nℓ vertices such that,

• X is G-lift of a graph X0 on n vertices, and

• If |G| ≤ exp
󰀓
Θ
󰀃
n√
d

󰀄 󰀔
, then λu(X) ≤ O

󰀃√
d · logd

󰀄
.

• If |G| 󳓬 exp
󰀓
Θ
󰀃
ndδ

󰀄 󰀔
for δ ∈ [−1

2 , 1), then λu(X) ≤ O
󰀓
d

2+δ
3 · logd

󰀔
.

In particular, we have explicit polynomial time construction of a lift when |G| 󳓬 exp(Θ(n)).

2.2.1 A Simple Proof via Converse EML

In this section, we give a simpler proof of a weaker result similar to one in [ACKM19] that

says that if the lifts were picked independently and uniformly at random, the lifted graph

also expands. We start with a converse of the expander mixing lemma by Bilu and Linial.

Theorem 2.2.2 ([BL06, Lemma 3.3]). Let M be an n × n real symmetric matrix such that the

ℓ1 norm of each row in M is at most d, and all diagonal entries of M are, in absolute value,

O(α(log(d/α) + 1)). Assume that,

max
u,v ∈ {0,1}n

Supp(u)∩Supp(v)󳓬∅

|utM v|
󰀂u󰀂󰀂v󰀂 ≤ α.

Then, the spectral radius of M is O(α(log(d/α) + 1)).

We will use ρ(M) to denote the spectral radius of M. Our goal is to bound λ(A(s)) 󳓬

maxχ󲧰1 A(χ). Since A(χ) is complex-valued, we will use this simple observation.
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Observation 2.2.3 (From complex to real matrices). Let M 󳓬 C + iD where C,D are real

symmetric matrices, then ρ(M) ≤ 2 · max{ρ(C), ρ(D)}.

Proof. Let v 󳓬 v1 + iv2 be an eigenvector and α 󳓬 max{ρ(C), ρ(D)}. Then,

v∗Av 󳓬 Re(v∗Av) 󳓬 (vT1Cv1 + vT2Cv2 − vT1Dv2 + vT2Dv1)

≤ ρ(C)󰀂v󰀂2 + 2ρ(D)󰀂v1󰀂󰀂v2󰀂

≤ α(󰀂v1󰀂 + 󰀂v2󰀂)2

≤ 2α
󰀓
󰀂v1󰀂2 + 󰀂v2󰀂2

󰀔

󳓬 2α󰀂v󰀂2. □

LetX be a graph,G be an abelian group, and s be a signing s : E → G. LetA(χ) 󳓬 C+iD

where C,D are real symmetric matrices. Now, we need to bound the discrepancy of C,D.

The argument is as follows: Fix a pair of vectors u, v, and a character χ. We show that

if the signing is (pseudo)random, then the discrepancy (with respect to u, v) is small with

a very high probability. We then take a union bound over the 22n pairs of boolean vectors

and |G| − 1 many non-trivial characters. To carry this out, we need an exponentially good

probability; hence, we will need a Hoeffding bound. We start with a simple calculation.

Some useful inequalities Let S, T be subsets of the vertices of a d-regular graph. Define

E(S, T ) 󳓬 {(x,y) ∈ E | x ∈ S, y ∈ T } and let e(S, T ) :󳓬 |E(S, T )|. Let u, v ∈ {0, 1}n and let

S :󳓬 Supp(u), T :󳓬 Supp(v). Then,

|uTCv| ≤
󳕗

u∈E(S,T )
|Re(χ(s(e)))| ≤ e(S, T ), (2.1)

|uTDv| ≤
󳕗

u∈E(S,T )
|Im(χ(s(e)))| ≤ e(S, T ). (2.2)

Let us now state the expander mixing lemma,
󲷲󲷲󲷲e(S, T ) − d|S| |T |

n

󲷲󲷲󲷲 ≤ λu(X)
󰁳
|S| |T |. (2.3)

19



We state the key property we require from our distribution over the signings. For a

complex number z, we use Re(z), Im(z) to refer to its real and imaginary parts respectively.

Definition 2.2.4 (β-exponentially good signings). Fix a graph X and a group G. A dis-

tribution D over signings s : E → G is β-exponentially good if for any subset of edges,

U ⊆ E, and any non-trivial character χ : G → 󳕬,

Prs∼D

󰀗󲷲󲷲󲷲󳕗
e∈U

Re(χ(s(e)))
󲷲󲷲󲷲 ≥ t

󰀘
≤ 2 exp

󰀕
−βt2
|U|

󰀖
,

Prs∼D

󰀗󲷲󲷲󲷲󳕗
e∈U

Im(χ(s(e)))
󲷲󲷲󲷲 ≥ t

󰀘
≤ 2 exp

󰀕
−βt2
|U|

󰀖
.

This property holds for uniformly random signings and pseudorandom signings using

walks on an expander graph (Corollary 2.2.10). We only prove the general case later.

Lemma 2.2.5 (Hoeffding). Let D be the uniform distribution over all signings s : E → G. Then

D is 1
128e -exponentially good.

Lemma 2.2.6. Let s be sampled from a β-exponentially good distribution, and let N be either C

or D, where these are the matrices defined above. Let γ3 󳓬

√
d

2βn ln(3|G|), and define α 󳓬 (γ+ 1) λ.

Then for every pair of vectors u, v ∈ {0, 1}n, |uTNv| ≤ α󰀂u󰀂󰀂v󰀂, except with probability 2
3|G| .

Proof. Since the proofs are identical, we use N as a placeholder, which can be replaced by

C or D. Let S :󳓬 Supp(u), T :󳓬 Supp(v) and define a :󳓬
󰁳
󰀂u󰀂󰀂v󰀂 󳓬

󰁳
|S| |T |.

Case 1 - a ≤ γnλ
d . From Eq. (2.1) and Eq. (2.3), we have,

|uTNv| ≤ e(S, T ) ≤ d

n
a2

+ λa ≤ (γ + 1)aλ.

Case 2 - a >
γnλ
d . Using the trivial bound that a ≤ n in Eq. (2.3), we get,

e(S, T ) ≤ a
󰀓
da

n
+ λ

󰀔
≤ a(d + λ) ≤ 2ad.

By Lemma 2.2.5 we get,

Prs∼D
󰀅
|u⊺Nv| ≥ (γ + 1)aλ

󰀆
≤ 2 exp

󰀕
−((γ + 1)aλ)2
128e · e(S, T )

󰀖
.
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We can upper bound this as,

((γ + 1)aλ)2
128e · e(S, T ) ≥ ((γ + 1)aλ)2

128e(2ad)

≥ (γ + 1)2a
256e

(λ2 > d)

≥ γ(γ + 1)2nλ
256ed

(By case assumption on a)

≥ γ3n

2 · 256e
√
d

≥ ln(3 |G|). (By assumption on γ), □

Theorem 2.2.7 (Random signings). Let X be a d-regular graph that is a λ 󳓬 O(
√
d)-expander.

Let D be a β-good distribution. Then, there exists a signing s ∈ Supp(D) such that the lifted

graph, X(s), is a λ′-expander, where λ′ 󳓬 O
󰀃
max

󰀋
d

2+δ
3 ,

√
d
󰀌

logd
󰀄
.

Proof. Lemma 2.2.6 gives a bound of α 󳓬 (γ + 1) λ on the Rayleigh quotient of C,D

holds except with probability 2
3|G| over the signings. Since λ 󳓬 O

󰀃√
d
󰀄
, we get α 󳓬

O
󰀃
max

󰀋
d

2+δ
3 ,

√
d
󰀌󰀄

.

Since the graph is d-regular, A(χ) is d-sparse and so is C and D. The ℓ1-norm of any

row of C,D ≤ d as we have a sum of d entries of the form Re(ωj), Im(ωj) for some j and

the absolute value of each of these is upper bounded by 1. Moreover, the diagonal entries

are all zero. Therefore, C,D satisfy the criteria of the Theorem 2.2.2 which implies,

λmaxA(χ) ≤ 2 max{ρ(C), ρ(D)} ≤ 2α log(d/α) ≤ O(α logd).

To finish the proof, we need to take a union bound over each of the ℓ − 1 non-trivial

characters and bound the spectrum of A(χ) as above. Thus, we have that the probability

that there exists a good signing is at least 1 − ℓ
󰀓

2
3ℓ

󰀔
> 0. □
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2.2.2 Derandomized signings via expander walks

Now, we describe how the signings for the lift are generated via walks on an expander.

The key pseudorandom property is that these signings satisfy an expander Hoeffding

bound, i.e., are β-exponentially good. Let ℓ 󳓬 |G|, and assume that we have a numbering

of the group elements, ϕ : [ℓ] → G. We use an expander construction from Alon [Alo21],

Theorem 2.2.8 ([Alo21, Thm. 1.3]). For every degree d ≥ 3, every ε > 0 and all sufficiently

large m ≥ n0(d, ε) where md is even, there is an explicit construction of a (d, λ)-expander graph

on m vertices with λu ≤ 2
√
d − 1 + ε.

We can fix the degree to be an even constant, say d′, and have ε 󳓬
√
d′ − 1. Then, we

use Theorem 2.2.8 to get an explicit expander, L, on ℓ vertices. To obtain a sequence of lifts,

i.e., elements of G, we first pick a random vertex, v1, which uses log ℓ bits of randomness.

Then, we do a random walk for dn−1 steps producing a sequence (v1, · · · , vdn) of vertices

of L, which we interpret as elements of G as (ϕ(v1), · · · ,ϕ(vdn)). Each random walk

step requires O(logd′) bits of randomness as the graph is d′-regular. Therefore, the total

amount of randomness is² O(log ℓ+ (dn− 1) logd′). The main observation is that signings

generated via expander random walks satisfy a Hoeffding-type concentration result we

used in the earlier proof.

Theorem 2.2.9 ([Rao19, Thm. 1.1]). Let {Yi}∞i󳓬1 be a stationary Markov chain with state space

[N], transition matrix A, stationary probability measure π, and averaging operator Eπ, so that Y1

is distributed according to π. Let λ 󳓬 󰀂A − Eπ󰀂L2(π)→L2(π) and let f1, · · · , ft : [N] → 󳕻 so that

󳕮[fi(Yi)] 󳓬 0 for all i and |fi(v)| ≤ ai, for all v ∈ [N] and all i. Then for u ≥ 0,

Pr
󰀗󲷲󲷲󲷲 t󳕗
i󳓬1

fi(Yi)
󲷲󲷲󲷲 ≥ u

󰀓 t󳕗
i󳓬1

a2
i

󰀔 1
2
󰀘

≤ 2 exp
󰀕
−u2(1 − λ)

64e

󰀖
.

Using the above concentration result, we can prove a general version of Lemma 2.2.5.

2. Another way to say this is that the number of walks of length on dn on L is |G| · d′dn.
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Corollary 2.2.10 (Expander Hoeffding). Let D be the uniform distribution over signings con-

structed by a random walk on the above-described expander. Then, D is 1
128e -exponentially good.

Proof. Let Ye 󳓬 s(e) be the random variables associated with each edge e. From the

construction described earlier, {Yu,v} is a Markov chain with the transition matrix being

the weighted adjacency matrix of the expander L such that λ(L) ≤ 3
√
d′ − 1/d′. Thus,

1 − λ ≥ 1 − 3√
d′

≥ 1/2 for d′ ≥ 36. The stationary measure π is the uniform measure on

vertices of L, and it is stationary as the all-ones vector is an eigenvector of the weighted

adjacency matrix with eigenvalue 1. Recall that we picked the first vertex (Y1) uniformly,

i.e., from π. Let fe 󳓬 Re(χ(s(e))) and ge 󳓬 Im(χ(s(e)) if e ∈ U and 0 otherwise.

󳕮[fe] 󳓬 1
ℓ

󳕐ℓ−1
i󳓬0 Re(ωi) because the characters are roots of unity and the expectation

is over π which is uniform. Since the sum of the roots of unity is zero, so is its real and

imaginary part. This holds thus for ge too. Moreover, ae 󳓬 1 if e ∈ U and is 0 otherwise.

Applying Theorem 2.2.9 with u :󳓬 t/
󰁳
|U| gives the result. □

Theorem 2.2.1 (Exactly Exponential Lifts). For any positive integer n and every constant

degree d ≥ 3, given the generating elements of an abelian group G, there exists a deterministic

poly(exp(n), |G|) time algorithm that constructs a d-regular graph X on nℓ vertices such that,

• X is G-lift of a graph X0 on n vertices, and

• If |G| ≤ exp
󰀓
Θ
󰀃
n√
d

󰀄 󰀔
, then λu(X) ≤ O

󰀃√
d · logd

󰀄
.

• If |G| 󳓬 exp
󰀓
Θ
󰀃
ndδ

󰀄 󰀔
for δ ∈ [−1

2 , 1), then λu(X) ≤ O
󰀓
d

2+δ
3 · logd

󰀔
.

In particular, we have explicit polynomial time construction of a lift when |G| 󳓬 exp(Θ(n)).

Proof. We construct a d-regular graph X0 using Theorem 2.2.8 on n vertices such that

λ2(G) ≤ 2
√
d. We generate a set of signings as described above using ad′-regular expander

on ℓ vertices. This takes time ℓ exp(nd ln(d′)) and we can fix d′ 󳓬 36. For each signing, we

compute the eigenvalue of the adjacency matrix of the lifted graph and pick the one with

the smallest λ2. The existence of a good signing is guaranteed by Theorem 2.2.7. □
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CHAPTER 3

GRAPH LIFTS VIA THE TRACE METHOD

Janki: Derandomizing union bounds is hard!

Piro: Yeah, they are tricky. It is often helpful to write an alternate proof.

Laqa: The random lift analysis via discrepancy I mentioned last time has the same issue.

I am reading this trace method proof of random 2-lifts that avoids a union bound.

Janki: What does the trace method do?

Laqa: Think of it as a reduction to counting! Basically, ρ(A)k ≤ tr(Ak) but trace counts

cycles.

Piro: So now, instead of using edge expansion of the base graph, I guess you want to use

the fact that it has a few short cycles. Where is the randomness used?

Laqa: Yes, precisely. The randomness zeroes out many cycles, and for the expected trace,

you only need to count certain special cycles that are easier to bound.

Janki: I need details. Care to explain while we wait an hour for our deep dish?

Laqa: Sure! So let A be the adjacency matrix of an expander ...

In this chapter, we continue our analysis of random lifts. We use the trace power

method and prove the following result for smaller lifts,

Theorem 3.0.1. For large enough n and constant degree d ≥ 3, given an Abelian group G such

that |G| ≤ exp(nΘ(1)), and any fixed constant ε ∈ (0, 1), we can construct in deterministic

polynomial time, a d-regular graph X on Θ(nℓ) vertices such that,
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• X is G-lift of a graph X0 on Θ(n) vertices.

• If |G| ≤ exp
󰀃
nδ(d,ε)󰀄 , then λ(X) ≤ 2

√
d − 1 + ε.

• If |G| ≤ exp
󰀃
nδ

󰀄
and also d ≥ d0(ε), then λ(X) ≤ ε · d.

3.1 Overview of the Trace Method

The trace method is the name for utilizing the following inequality,

ρ(B)2k ≤
󳕗
i

|λki |
2
󳓬 tr((B∗)kBk) .

The LHS is the quantity we wish to bound, while the RHS can be reduced to a com-

binatorial quantity for certain operators B. We will switch to working with the non-

backtracking operator Bs(χ) instead of the adjacency matrix A(χ) as the combinatorial

quantity arising from the trace of Bk is easier to work with.

Definition 3.1.1 (Non-backtracking walk operator). For an extended signing s : Ed → G

and a character χ of G, the signed non-backtracking walk matrix Bs(χ) is a non-symmetric

matrix of size |Ed |× |Ed | in which the entry corresponding to the pair of edges (u, v), (x,y)

is χ(s(x,y)) if v 󳓬 x, u 󲧰 y, and zero otherwise.

The unsigned variant is obtained by taking the trivial character in the definition above.

Let the non-backtracking walk matrix of X be B and the lifted graph with respect to a

signing s be BX(s). We use the following standard facts that we prove in Appendix A.2.

Fact 3.1.2. Let B be the non-backtracking walk matrix of a d-regular graph G. Then,

λ(G) ≤ 2 · max
󰀋√

d − 1, ρ2(B)
󰀌
.

Fact 3.1.3. If G is abelian, then Spec(BX(s)) 󳓬
󳕒

χ∈Ĝ Spec(Bs(χ)).

The overall approach is as follows: (i) Show that over random signings, the quantity

󳕮s[tr((B∗
s)kBk

s )] is small (for every non-trivial character) (ii) Derandomize part (i) by ob-
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serving that one only requires k-wise independence rather than uniformly independent

signings. This yields an explicit construction of a signing. We now explain part (i) in

detail as it is the technical crux of the proof.

3.2 Proof strategy

Let X0 be a base expander graph and s : E0 → 󳖃2 be a signing that defines a lift. It is

convenient to first think that the signing is chosen uniformly at random, and later, see

which properties were used so that an appropriate derandomization tool may be used.

The [MOP20] Argument: Applying the trace method¹ we get,

ρ(Bs)2k ≤ tr((B∗
s)kBk

s ) 󳓬

󳕗
(e1,...,e2k)

closed edge walk

2k󳕘
i󳓬1

χ(s(ei)).

The above expression greatly simplifies when we take the expectation over a uniformly

random signing since only walks in which every edge occurs at least twice do not zero out

on average. These walks are called singleton-free in [MOP20]. We have,

󳕮
s

󰁫
ρ(Bs)2k

󰁬
≤

󳕗
(e1,...,e2k)

closed edge walk

󳕮
s

󰀥 2k󳕘
i󳓬1

χ(s(ei))
󰀦

≤
󲷲󲷲󲷲󰁱 2k-length singleton-free

non-backtracking walks in X0

󰁲󲷲󲷲󲷲.

This reduces the problem of bounding the spectral radius to a counting problem of these

special walks. In the hypothetical (idealized) scenario of X0 being Ramanujan and the

counting on the RHS above being (d − 1)k, we would have a Ramanujan lift.

One of the main technical contributions in [MOP20] is the counting of 2k-length

singleton-free non-backtracking walks in X0, which they call hikes. For the sake of in-

1. To avoid discussing unimportant technicalities, we will make some simplifications in this high-level
overview.
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tuition, we will assume that X0 has girth g, but it is not hard to modify the argument when

X0 has at most one cycle around any neighborhood of radius < g/2 centered at a vertex in

X0 (this is the property of being bicycle-free). They view the vertices and edges visited in a

hike as forming a hike graph H. Assuming that g 󳓬 Ω(logd−1(n)), if k is not too large, then

H looks like a tree, possibly with a few additional edges forming cycles as established by

Alon, Hoory, and Linial in [AHL02] (and generalized in [MOP20] to bicycle-free radius

from girth).

Assuming that the hike is singleton-free, we can have at most k steps that visit an edge

that was not previously visited. This implies that the hike graph H has at most k edges

and at most k + 1 vertices (since it is connected). They count the number of these special

walks by directly specifying an encoding for the hike. Up to negligible factors (after 2k-th

root for k not too small), they show that there are at most

n · (d − 1)k · kO
󰀓
ln(k)
g

󰀔
·k

,

singleton-free hikes of length 2k (see [MOP20, Theorem 3.9] for precise details). This

bound trivializes, i.e., it becomes at least (d− 1)2k, for ln(k) ≫ √
g 󳓬 Θ

󰀓󰁳
logd−1(n)

󰀔
. This

means that we cannot use their bound for very long walks, and this, in turn, prevents us

from getting lift sizes larger than 22Θ(
√

logd−1(n))
from their results.

Our Approach Now, let us consider abelian G-lifts and let ℓ :󳓬 |G|. The spectral radius

of each Bs(χ) can be analyzed similarly via the trace power method. However, we need

to bound all of them simultaneously. We know no better way than a simple union bound

over the ℓ − 1 cases, but this will force us to obtain a much better concentration guarantee

out of the trace power method, which entails considering much larger walk lengths.

Instead of encoding a hike directly as in [MOP20], we will first encode the subgraph of

X0 traversed by the hike, which we call the hike graph, and then encode the hike having

the full hike graph at our disposal. We will give two different encodings for the hike
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graph. The first one is simpler and can encode an arbitrary graph. The second encoding

uses the special structure of the hike graph, namely, having few vertices of degree greater

than 2. Both encodings are based on the traversal history of the simple depth-first search

(DFS) algorithm. Let H be the hike graph on m ≤ k edges and n′ ≤ k+ 1 vertices. As DFS

traverses H, each of its edges will be visited twice: first “forward” via a recursive call and

later “backwards” via a backtracking operation. We view each step of the DFS traversal as

being associated with an edge that is being currently traversed and the associated type of

traversal: recursive (R) or backtracking (B). A key observation is that only for the recursive

traversals we need to know the next neighbor out of d− 1 possibilities (except for the first

step). For the backtracking steps, we can rely on the current stack of DFS. Thus, if we are

given a starting vertex from X0, a binary string in {R,B}2m and a next neighbor for each

recursive step, we can reconstruct H. Note that there at most

n · d · (d − 1)k · 22k,

such encodings. Having access to the hike graph and again assuming that the graph

has girth g 󳓬 Ω(logd−1(n)) (similarly, bicycle freeness is also enough). Using the locally

tree-like structure, a 2k-length hike can be specified by splitting it into segments of length

< g/2; by specifying the starting vertex of the first segment and the ending vertex of each

segment, we have enough information to recover the full hike. Note that there are at most

kO(k/g)

ways of encoding a hike. Then, the number of 2k-hikes in X0 is at most

n · d · (d − 1)k · 22k · kO(k/g).

Now we can take k ≈ nδ for a sufficiently small δ 󳓬 δ(d) > 0 and obtain, after taking the

2k-th root of the above quantity,

ρ(Bs) ≤ (1 + ε) · 2 ·
󰁳
(d − 1),

when k 󳓬 k(n,d, ε) is sufficiently large and c 󳓬 c(ε) is sufficiently small. The extra factor
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of 2 prevents us from obtaining near-Ramanujan bounds with this counting. Nonetheless,

the simple counting already allows us to obtain expansion O(
√
d) for lifts sizes as large as

2n
δ(d) . Moreover, by weakening the expansion guarantee we can obtain lift sizes as large

as 2n
Θ(1) from this counting and obtain part of Theorem 3.0.1. If we insist on getting a

near-Ramanujan bound, we need to compress the traversal history further since storing a

string {R,B}2m is too costly and leads to this factor of 2. Note that this string has an equal

number of R and B symbols, so it cannot be naively compressed.

To obtain a near-Ramanujan graph, we will take advantage of the special structure

of the hike graph (when the walk length is large but not too large) in which most of its

vertices have degree 2. These degree 2 vertices are particularly simple to handle in a DFS

traversal. For them, we only need to store the next neighbor out of d − 1 possibilities in

X0 (except for the first step). In a sequence of backtrackings if the top of the DFS stack is

a degree 2 vertex, we know that we are done processing it since no further recursive call

will be initiated from it. Then, we simply pop it from the stack. It is for the “rare” at most

δ · n′ vertices v of degree ≥ 3 that we need to store how many extra recursive calls tv we

issue from v and a tuple of additional next neighbors (d1, . . . ,dtv). The total number of

such encodings is at most

n · d · (d − 1)k ·
󰀕

k + 1
δ(k + 1)

󰀖
· (d − 1)δ(k+1),

which combined with the same previous way of encoding a hike given its graph results

in a total number of hike encodings of X0 of at most

n · d · (d − 1)k ·
󰀕

k + 1
δ(k + 1)

󰀖
· (d − 1)δ(k+1) · kO(k/g),

By choosing δ 󳓬 δ(d, ε) sufficiently small and taking k 󳓬 k(n,d, ε) ≤ 2δ·g ≈ nOd(δ)

sufficiently large, we obtain after taking the 2k-th root

ρ(Bs) ≤
󰁳
(d − 1) + ε,
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leading to a near-Ramanujan bound for lifts as large as 2n
δ in Theorem 3.0.1.

Now we briefly explain how to handle the union bound to ensure that ρ(Bs(χ)) is

simultaneously small for all (ℓ−1) non-trivial characters (in the decomposition of Fact 3.1.3).

This union bound is standard when using the trace power method, what is relevant is

the trade-off between lift size and walk length. To obtain a high probability guarantee

from a guarantee on expectation; it is standard to consider larger walk lengths from

which concentration follows from a simple Markov inequality. More precisely, if for some

function f , 󳕮s[ρ(Bs(χ))2k] ≤ f(n,d,g, k), then by Markov’s inequality,

Pr
s

󰁫
ρ(Bs(χ)) ≥ 2log2(ℓ)/(2k) · f(n,d,g, k)1/(2k)

󰁬
≤ 1

ℓ
.

Therefore, for k ≥ log2(ℓ) sufficiently large, we can union bound over all characters χ and

obtain similar bounds as before. As alluded to above, this lower bound on the length

of the walk depending on the lift size is the reason why we are led to consider much

longer walks. To conclude this proof sketch, we need to replace a random signing by a

pseudorandom random one. As in [MOP20], we use ε-biased distributions, e.g., the one²

by Jalan and Moshkovitz in [JM21]. We may be taking very large walks on the base graph

X0, so the error of the generator needs to be smaller than n · d2k, where k can be as large

as nΘ(1). We note that as long as the degree d is a constant, this quantity is, at most, a

polynomial in the size of the final lifted graphX since walks of lengthO(log(|V(X)|)) suffice

for any lift size up to full extent of 2O(n), for which abelian lifts can be expanding.

3.3 A New Encoding for Special Walks

In this section we will count the total number of singleton-free hikes of a given length on

a fixed graph, X. We split the count into two parts. First, we count the number of possible

2. For our application, it suffices to have the support size of the ε-biased distribution polynomial in 1/ε.

30



hike graphs and then, for a given hike graph H, we count the number of hikes that can

i.e., yield H on traversal. Each of these counts is via an encoding argument and therefore

we have two kinds of encoding. One for graphs and the other for hikes. In the first part of

the section we give two ways of encoding graphs, and in the other half, we encode hikes.

Since the first section is a general encoding for subgraphs, we relegate formal definitions

related to hikes to a later section.

3.3.1 Graph Encoding

Let H be a subgraph of a fixed d-regular graph X. We wish to encode H in a succinct way

such that given the encoding and X, we can recover H uniquely. We will give two ways

of encoding H. The first one will be generic that works for any subgraph of a d-regular

graph. The second encoding takes advantage of the special sparse structure (not too many

vertices of degree greater than two). We assume that we have an order on the neighbors

of every vertex, and thus, given (v, j), we can access the jth neighbor of v efficiently.

We will do this by encoding a DFS based-traversal of it from a given start vertex . Here,

we really need our DFS traversal to be optimal in the sense that the number of times each

edge is traversed is at most two and not any higher. We, therefore, include precise details

of our implementation in Appendix A.3. To reconstruct the graph, we reconstruct the

traversal and so need access to two types of data before every step:

1. Is this step recursive or backtracking?

2. If it is a recursive step, then which neighbor do we recurse to?

To determine the neighbor of the current vertex, we need to move to in a recursive call,

we need to specify one out of the d − 1 possibilities (except in the first step, which has d

possibilities). This can be specified by a tuple of (d1, . . . ,d|E(H)|) ∈ [d] × [d − 1]|E(H)|−1

indicating the neighbor. For a backtracking step, we just pop the stack and thus do not

31



need any additional data.

We use two ways to figure out whether a step is recursive or backtracking. The direct

way is to just record the sequence in a binary string of length 2|E(H)|. A neighbor u

of v is called recursive if the edge (v,u) is visited by a recursive call from v. A simple

observation about backtracking sequences is that – a backtracking sequence starts when

we encounter a vertex that has already been visited or when we reach a degree one vertex.

The sequence ends when we see a visited vertex that has unvisited recursive neighbors.

Therefore, we store a string σ ∈ [d] × [d − 1]|V(H)|−1 in which σi denotes the number of

recursive neighbors of the ith visited vertex. To summarize,

GraphEnc(H):

(a) Starting vertex v1 ∈ V(G)

(b) A sequence of degrees (d1, . . . ,d|E(H)|) ∈ [d] × [d − 1]|E(H)|−1

(c) Either σ ∈ {R, B}2|E(H)| (Encoding I) or,

σ ∈ [d] × [d − 1]|V(H)|−1 (Encoding II)

Algorithm 3.3.1 (StepType).

Input (v, t)

Output (Type)
Note - The subroutine to detect the type of step depends on the encoding string σ.

· If σ is from Encoding I, return σt

· Else, let j 󳓬 ord(v)

· If σj > 0 //Check if there are any remaining recursive neighbours

· Decrement σj ← σj − 1

· return R

· Else, return B
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Algorithm 3.3.2 (Unpacking Algorithm for GraphEnc).

Input GraphEnc(H)

Output H

· Initialize DFS stack S with v1

· Initialize H 󳓬 ({v1}, ∅)

· Initialize n, r, t 󳓬 1 // count visited vertices, recursive steps and total steps

· Initialize ord(v1) 󳓬 1

· While S 󲧰 ∅:

· Let v be the top vertex on the stack S

· step 󳓬 StepType(v, t)

· If step 󳓬 R (recursive):

· Assign vnext to be dth
r neighbor of v and increment r

· Add edge {v, vnext} to H

· If vnext is unvisited :

· Add vertex vnext to H

· n ← n + 1

· ord(vnext) ← n

· push(vnext, S)

· Else if vnext is visited, increment t // Next step is backtracking

· If step 󳓬 B (backtracking):

· pop(S)

· t ← t + 1

· return H
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Counting the encodings

For the first kind of encoding of type, we have 22k strings of length 2k over {R,B}. The

second encoding might seem wasteful in general but it is much better when the graph has

special structure that our hike graph will satisfy. We first note that for any vertex v, the

number of recursive neighbours σv ≤ degH(v) − 1 (or ≤ degH(v) if v 󳓬 v0).

Definition 3.3.3 (Excess). The excess of H is defined as exc(H) ≔ |E(H)| − |V(H)|.

Definition 3.3.4 (Excess Set). We define a vertex to be an excess vertex in H if degH(v) > 2

and we define the excess set to be the set consisting of such vertices, i.e.,

excSet(H) ≔
󲷲󲷲󰀋v ∈ V(H) | deg(v) > 2

󰀌󲷲󲷲.
Lemma 3.3.5. Let X be a fixed d-regular graph on n vertices. The total number of connected

subgraphs H of X having at most ≤ k edges is at most

2n · d · (d − 1)k−1 · 22k.

Moreover, if H is constrained to have at most two vertices of degree one³ and exc(H) ≤ δk, the

count is at most

2nk3 · d · (d − 1)k−1 · 2H2

󰀓
δ

1−δ

󰀔
k · dδk.

Proof. We first fix the number of edges as m and we will then sum up the expression for

m ≤ k. Algorithm 3.3.2 unambiguously recovers the graph and therefore the number of

possible graphs can be counted by counting the number of possible inputs. The number

of degree sequences and start vertices are n · d(d − 1)m−1. The number of σ-strings of

encoding I are 22m. Therefore for a given m, we have nd · (d − 1)m−1 · 22m and summing

this gives the first claim.

In the second case, the key idea is that for every vertex (except the start) of degree 2,

σv must be 1. Since |excSet(H)| ≤ δm, almost all of the string σ is filled by 1.

3. We will see later that hike graphs satisfy this strange property
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We first pick the number of vertices, say t. There are at most m choices for this. Then,

we let the number of excess vertices be j. Summing over all possible j, the number of

σ-strings of length t is at most

t2
δm󳕗
j󳓬0

󰀕
t

j

󰀖
dj ≤ t2dδm

δm󳕗
j󳓬0

󰀕
t

j

󰀖
≤ t2dδm2

H2

󰀓
δ

1−δ

󰀔
t
.

Here, the first term counts the ways of having or up to two vertices of degree 1, the

second counts the ways to choose the excess vertices, and the third counts the number of

their recursive neighbors. In the last inequality, we used that t 󳓬 m − exc(H) ≥ (1 − δ)m.

The complete expression for the number of graphs would then be

󳕗
m≤k

󰀕
nd(d − 1)m−1

m󳕗
t󳓬(1−δ)m

t2dδm2H2
󰀃

δ
1−δ

󰀄
t

󰀖
≤ 2nk3 · d · (d − 1)k−1 · 2H2

󰀓
δ

1−δ

󰀔
k · dδk.

□

3.3.2 Bounding Singleton Free Hikes

Following [MOP20], we make the following useful definitions,

Definition 3.3.6 (Singleton-free hikes). A k-hike W is a closed walk of 2k-steps󰑖 in X in

which every step except possibly the (k + 1)st is non-backtracking. A hike is singleton-free

if no edge is traversed exactly once.

Definition 3.3.7 (Bicycle free radius [MOP20]). A graph X is said to have a bicycle-free

radius at radius r if the subgraph H of distance-r neighborhood of every vertex has

exc(H) ≤ 0.

We will work with singleton-free hikes in this section. A singleton-free k-hike on X

defines a subgraph H such that there at most two vertices of degree 1 (the start vertex and

4. That is sequence of (v0, · · · , v2k−1) such that (vi, vi+1) ∈ E(G) and v0 󳓬 v2k−1
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the middle vertex) and the number of edges is at most k as every edge is traversed at least

twice. The goal now is to count the possible number of singleton-free k-hikes that yield a

fixed subgraph H. Having access to H, we will need to encode the hike in a way similar

to the encoding of stale stretches in [MOP20].

HikeEnc:

(a) (v1, . . . , vs) ∈ V(H)s,where s 󳓬 ⌈2k/r⌉ and r is the bicycle free radius of H.

(b) (c1, . . . , cs) ∈ {0,±1, · · · ,±⌊r/2⌋}s. Here, ci denotes the number of times the unique

cycle (in the neighborhood of vi) is to be traversed and the sign indicates the orien-

tation. Since each stretch is of length r and each cycle of length at least 2 we can

traverse a cycle at most ⌊r/2⌋ times.

Claim 3.3.8. For any graph H that is bicycle free at radius r, the number of simple singleton-free

k-hikes that have H as their hike graph is at most (|rV(H)|)⌈2k/r⌉ .

Proof. Follows from the possible values the encoding HikeEnc can take. □

We use a generalization of the bound of Alon et al. [AHL02] on the excess number

(originally involving the girth), extended to bicycle-free radius in [MOP20].

Theorem 3.3.9 ([MOP20, Theorem 2.13]). LetH be a bicycle free graph of radius r ≥ 10 ln(|V(H)|).

Then,
exc(H) ≤ ln(e|V(H)|)

r
· |V(H)|.

Corollary 3.3.10. Let X be a d regular graph on n vertices bicycle free at radius r. Let H be

a subgraph with at most two vertices of degree one on n0 vertices where n0 󳓬 eδr−1 for some

δ ≤ 1/10. Then,
excSet(H) ≤ 2δn0 + 2.

Lemma 3.3.11. Let X be a d regular graph, with d ≥ 3, on n vertices bicycle free at radius r.

Then, the total number of singleton-free (k − 1)-hikes on X is at most

󰀓
2γ1

√
d − 1

󰀔2k
where γ1 󳓬 1 +

log(nrk)
2k

+
log(rk)

r
.
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If we assume that 3 ≤ k ≤ eδr, then it is at most

󰀓
2γ2

√
d − 1

󰀔2k
where γ2 󳓬

log(16nk3rd)
2k

+
log(rk)

r
+H2(5δ)/2 + δ logd.

Proof. Any singleton-free (k − 1)-hike defines a connected graph H with at most k − 1

edges and, therefore, at most k − 1 vertices. If there is no backtracking step, then all

vertices except the start have a degree of at least two. Otherwise, the endpoint of one of

the backtracking steps may have a degree of 1. Thus, there are at most 2 vertices of degree

one. When k is unbounded, we use the bound from the first encoding i.e. Lemma 3.3.5

and combine it with the number of possible hikes on this from Claim 3.3.8 to get

≤ 2n · d · (d − 1)k−2 · 22(k−1)(r(k − 1))
2(k−1)

r +1

≤ (nrk) · (d − 1)k · 22k(rk)2k
r

≤
󰀕
2 · 2log(nrk)/2k2

log(rk)
r

󰀖2k
(d − 1)k

≤
󰀓
2γ1

√
d − 1

󰀔2k
.

The assumption onk lets us use Corollary 3.3.10 which when combined with Lemma 3.3.5

gives us the bound on the number of such graphs as 4nk2d · (d − 1)k−1 ·
󰀃 k
2δk+1

󰀄
· d2δk+1.

Combining with the number of possible hikes on this from Claim 3.3.8, we get the total

number of singleton-free k-hikes bounded by

≤ 4n(k − 1)2 · d · (d − 1)k−2 ·
󰀕

k − 1
2δ(k − 1) + 2

󰀖
· d2δ(k−1)+2(r(k − 1))2k−2

r +1

≤ (16nk3rd)(d − 1)k · 2H2(5δ)k · d2δk(rk)2k
r

≤
󰀕
2log(16nk3rd))/2kdδ2

log(rk)
r 2H2(5δ)/2

󰀖2k
(d − 1)k

≤
󰀓
2γ2

√
d − 1

󰀔2k
. □
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3.4 How we use this method

In this section, we will use the bound on singleton-free hikes obtained in the last section

to bound the eigenvalue of the lifted graph. We first handle non-singleton-free hikes and

show that they can be easily bounded by the ε-biased property of the distribution of the

signings. We then formalize the construction by instantiating it using an expander from

MOP having large bicycle-free radius and then bring the bounds together.

3.4.1 A Simple Generalization of The Trace Power Method

We now show that the problem of bounding the spectral radius of the signed non-

backtracking operator reduces to counting singleton-free hikes. This reduction is a

straightforward generalization of the argument [MOP20, Prop. 3.3] for 󳖃2 to any abelian

group.

Let Bs(χ) (as defined in Definition 3.1.1) be the signed non-backtracking operator with

respect to a signing and a non-trivial character χ and ρ(Bs) denote its spectral radius. The

goal is to bound the largest eigenvalue of Bs(χ). The trace method is the name for utilizing

the following inequality,

ρ(B)2k ≤
󳕗
i

|λki |
2
󳓬 tr((B∗)kBk) 󳓬 󰀂Bk󰀂F.

The signing s is drawn from some distributionD, and we wish to show via the probabilistic

method that there exists a signing in D for which ρ(Bs(χ)) is small for any set of (l − 1)

non-trivial characters χ. We will use a first-order Markov argument and therefore wish to

bound 󳕮s∼D[tr(Bk
s (B∗

s)k)]. Writing it out, we get,

Tχ(s) 󳓬 tr((B∗
s)kBk

s ) 󳓬
󳕗
e∈Ed

󰀓
(B∗

s)kBk
se
󰀔
e

󳓬

󳕗
(e0,··· ,e2k)

B(e0, e1) · · ·B(ek−1, ek)B∗(ek, ek+1) · · ·B∗(e2k−1, e2k)
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󳓬

󳕗
(e0,··· ,e2k)

χ(s(e1)) · · · χ(s(ek))χ∗(s(ek)) · · · χ∗(s(e2k−1))

󳓬

󳕗
(e0,··· ,e2k)

χ(s(e1)) · · · χ(s(ek−1))χ∗(s(ek+1)) · · · χ∗(s(e2k−1)).

Notice that e0, ek do not appear in the term, and so we define Hk−1 as the multiset of

all tuples (e1, . . . , ek−1, ek+1, . . . , e2k−1) appearing in the support of this summation. We

denote each term in the summation above by χw(s) where w ∈ Hk−1. It follows directly

from the definition that each w ∈ Hk−1 defines a (k−1)-hike. Also, observe that any tuple

appears at most (d− 1)2 times as given a tuple w, we have at most (d− 1) choices for each

e0, ek. Let Hs
k−1 denote the singleton-free hikes in Hk−1. We can split Tχ(s) 󳓬 T1(s)+ T2(s)

where

T1(s) 󳓬
󳕗

w∈Hs
k−1

χw(s), T2(s) 󳓬
󳕗

w󲧿Hs
k−1

χw(s).

We now recall the definition of ε-biased distributions (Definition 1.3.10) specialized to

Abelian groups. This will be the key pseudorandomness tool.

Definition 3.4.1 (Bias). Let D be a distribution on a group G. The distribution, D, is

ν-biased if biasχ(D) :󳓬 |󳕮h∼D χ(h)| ≤ ν for every non-trivial character, χ.

Lemma 3.4.2. Let D ⊆ GE be an ν-biased distribution and let w 󲧿 Hs
k−1 be a singleton-hike, i.e.,

there is an edge that is traveled exactly once. Then, |󳕮s∼Dχw(s)| ≤ ν.

Proof. Let the set of distinct edges in w be {e1, · · · , er} and let edge ei be traveled ti times

where ti takes the sign into account.󰑜Let ej be the edge traversed exactly once. Then,

tj 󳓬 ±1. Now, we can rewrite χw(s) 󳓬
󳕑r

i󳓬1 χ(s(ei))
ti and it can be extended to a character

on HE(G). Since tj 󳓬 ±1, this character is non-trivial, and the claim follows from the

ν-biased property. □

5. Let ei appear f1 times in the first k − 1 steps and b1 times in the next (k − 1) steps. Similarly let e⊺
i

which is the reverse direction of e appear f2 times in the first k − 1 steps and b2 times in the next (k − 1)
steps. Then, ti 󳓬 f1 + b2 − f2 − b1.
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Lemma 3.4.3 (Analog of Corr. 3.11 in [MOP20]). Let X be a d-regular graph on n-vertices,

ε < 1 be a fixed constant, and G be an abelian group. Let ℓ :󳓬 |G|, and letD ⊆ Gm be an ν-biased

distribution such that ν ≤ (nℓd2)−1.
󰀓
ε
d

󰀔2k
.

Assume that the number of singleton-free (k − 1)-hikes is bounded by (2γ
√
d − 1)2k. Then

for any non-trivial character χ of G, we have that except with probability at most 1/ℓ over D,

ρ(B(χ)) ≤ 2γ
′√

d − 1 + ε where γ′ 󳓬 γ +
log(ℓd2)

2k .

Proof. By the decomposition above, we have T (s) 󳓬 T1(s) + T2(s). As each term in the

expression is of the form χ(h) and as remarked earlier, all the characters are roots of unity

so |χ(s(e))| 󳓬 1. Thus, |T1(s)| ≤ |π−1(H∗
k−1)| ≤ (d − 1)2 |H∗

k−1 |.

µ :󳓬 |󳕮s∼DT | 󳓬 |󳕮T1 +󳕮T2 |

≤ |󳕮T1 | + |󳕮T2 |

≤ |Hs
k−1 | +

󳕗
w󲧿Hs

k−1

|󳕮s∼Dχw(s)|

≤ d2(2γ
√
d − 1)2k + ν|Hk−1 |

≤ d2(2γ
√
d − 1)2k + νnd2k+2.

Here we have used the observation that |Hs
k−1 | ≤ (d − 1)2{|Singleton-free (k − 1)-hikes|}

and Lemma 3.4.2. The bound on |Hk−1 | is trivial as we have nd choices for the starting

edge and a walk of length of 2k + 1. Since T is a non-negative random variable, we apply

Markov to conclude that T ≤ µℓ with probability at most 1/ℓ. Hence, we obtain,

ρ(Bs(χ)) ≤ T1/2k < (µℓ)1/2k ≤
󰀕
d2ℓ

󰀓
2γ

√
d − 1

󰀔2k
+ νℓnd2k+2

󰀖1/2k

≤ (d2ℓ)1/2k2γ
√
d − 1 +

󰀓
νℓnd2k+2

󰀔1/2k
≤ 2γ

′√
d − 1 + (νℓnd2)1/2kd

≤ 2γ
′√

d − 1 +
ε

d
d ≤ 2γ

′√
d − 1 + ε. □
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3.4.2 The Instantiation

We will need two tools before we instantiate the explicit construction of abelian lifted

expanders leading to Theorem 3.0.1. The first is an explicit construction of expander

graphs to be used as base graphs in the lifting operation. Since we need this technical

condition of bicycle-freeness, we use the construction in [MOP20].

Theorem 3.4.4 ([MOP20, Theorem 1.1]). For any given constants d ≥ 3, ε > 0, one can

construct in deterministic polynomial time, an infinite family of graphs {Xn} with λ(Xn) ≤

2
√
d − 1 + ε and Xn is

• n ≤ |V(Xn)| ≤ 2n ,

• Xn is bicycle-free at radius c logd−1(|V(Xn)|),

• λ2(BX) ≤
√
d − 1 + ε.

The second tool is a ν-biased distribution for abelian groups (having a sample space

depending polynomially on 1/ν). We use a recent construction by Jalan and Moshkovitz.

Theorem 3.4.5 ([JM21]). Given the generating elements of a finite abelian group G and an integer

m ≥ 1 and ν > 0, there is a deterministic polynomial time algorithm that constructs subset

S ⊆ Gm with size O

󰀕
m log(H)O(1)

ν2+o(1)

󰀖
such that the uniform distribution over S is ν-biased.

We are now ready to prove our main result.

Theorem 3.0.1. For large enough n and constant degree d ≥ 3, given an Abelian group G such

that |G| ≤ exp(nΘ(1)), and any fixed constant ε ∈ (0, 1), we can construct in deterministic

polynomial time, a d-regular graph X on Θ(nℓ) vertices such that,

• X is G-lift of a graph X0 on Θ(n) vertices.

• If |G| ≤ exp
󰀃
nδ(d,ε)󰀄 , then λ(X) ≤ 2

√
d − 1 + ε.
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• If |G| ≤ exp
󰀃
nδ

󰀄
and also d ≥ d0(ε), then λ(X) ≤ ε · d.

Proof. Construct X0 on n ≤ n′ ≤ 2n vertices for given (d, ε) using Theorem 3.4.4 which

has r ≥ c logd−1 n
′. Let ℓ :󳓬 |G|.

• Regime 1 - Here, shorter walks will suffice, and we will use the bound on γ2 from

Lemma 3.3.11. To get near-Ramanujan, we need γ′ 󳓬 γ2 +
log(d2ℓ)

2k 󳓬 γ′2 +
log(ℓ)
2k to

be vanishing with ε. Observe that when k 󳓬 ω(logn), γ2 is bounded by o(1) +󰀓
2
√
δ + δ logd

󰀔
. We pick δ small enough and assume that n′ ≥ N(ε,d) such that

γ′2 ≤ 2ε√
d−1

. In the bounded k regime, we can pick k < eδr. Since, log(ℓ)
2k must also be

vanishing in ε, this forces log(ℓ) ≤ εk ≤ εeδr. This explains the bound on ℓ.

• Regime 2 - Here ℓ is larger and so we pick k 󳓬 log ℓ. Now, we need to use γ1 which

we recall is 1 +
log k
r + o(1). Thus, γ′ 󳓬 (γ1 +

log d2

k ) + log ℓ
k ≤ 3/2 +

log k
r . Since,

r 󳓬 c logd−1(n′), to get non-trivial expansion k ≤ nc/2 which explains the bound on

the exponent δ.

The precise parameters are as follows:

Regime δ k ν γ′

1 O
󰀓
ε2

d

󰀔
10
√
d−1
ε max(log ℓ, logn) (nld2)−1

󰀓
ε
3d

󰀔2k
󳓬 (nℓ)cd,ε 2ε

3
√
(d−1)

2 ≤ c/2 log ℓ 󳓬 nδ (nℓd2)−1
󰀓

1
3d

󰀔2k
󳓬 (nℓ)cd 2 +

δ
c log(d − 1)

Table 3.1: Precise parameters for the different regimes

Construct a ν-biased distribution D using Theorem 3.4.5. These two constructions take

poly(n, ℓ) time. From Corollary A.2.2, we have to analyzeB(χ) for ℓ−1 non-trivial characters

χ that appear in this decomposition. The largest eigenvalue is given by B(1), which is d−1.

For the second largest, λ2(B(1)) ≤
√
d − 1+ ε by the property of the base graph G obtained

by Theorem 3.4.4. Since we have the bicycle-free property, we can use Lemma 3.4.3 to
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conclude that for any non-trivial character, the following hold with probability at least

1 − 1/ℓ,

• Regime 1 - ρ(B(χ)) ≤ 2γ
′√

d − 1 + ε/3 ≤
√
d − 1 + ε.

• Regime 2 - ρ(B(χ)) ≤ 2γ
′√

d − 1 + 1 ≤ 2 · 22dδ/c
√
d − 1 ≤ εd when d ≥

󰀓
8
ε

󰀔 2c
c−2δ .

Using Fact 3.1.3, we assume that the decomposition has exactly one trivial character

(say, χ1) and (l − 1) non-trivial characters. Then, for the trivial character ρ(BX0(s)) 󳓬

ρ(B(χ1)) 󳓬 d − 1 and thus, ρ2(B) 󳓬 max
󰁱
λ(X0), maxℓ

i󳓬2 ρ(B(χi))
󰁲
.

Since the bound holds for any non-trivial χ except with probability 1/ℓ, we take a union

bound over these ℓ− 1 characters, we get that there is a labeling s ∈ D such that the bound

holds for ρ(B(χi)) and thus for λ(BX0(s)). By Fact 3.1.2, we get that λ(G) ≤ 2ρ2(BX) which

satisfies the bounds we need.

We can brute force through each s ∈ Supp(D) to find an s such that the lifted graph

X 󳓬 X0(s) has the required spectral gap. Checking this is a simple linear algebraic task

and can be done in time cubic in nℓ. Therefore, the total time taken is poly(n, ℓ). □
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CHAPTER 4

DERANDOMIZED POWERING

Piro: Ready to brace the polar vortex next week?

Laqa: Yes, I have saved the papers on my Zotero! What paper are you holding, Janki?

Janki: This? It is Ta-Shma’s paper on binary codes near the GV bound.

Piro: Another way to say it is that starting with an ε0-expander, Cay(󳖃n2 , S), they amplify

it to an ε-expander Cay(󳖃n2 , S′) of degree roughly logn
ε2+o(1) .

Laqa: So, does this technique work for other groups? What if I start with a constant

degree Cayley expander over a non-abelian group? Where is 󳖃n2 used?

Janki: The construction is very combinatorial; just walks on a graph. The analysis is via a

bias operator, that captures the bias of S. This is ±1-valued for 󳖃n2 , but I do not know

what it would look like for general groups.

Piro: Also, the degree bound achieved via this is what you get randomly via Alon–

Roichmann. But what you are saying would imply a constant degree expander,

which has no randomized proof.

Laqa: That makes sense. However, I am starting with a strong object that beats the random

argument, so it may not be hopeless.

A different paradigm to explicitly construct almost optimal expanders is to start with

a family of weak expanders and amplify it to a strong one via combinatorially defined

graph products. Here, weak versus strong refers to the trade-off between degree and

expansion. Alon–Bopanna bound says that to achieve spectral expansion λ, the degree of
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the graph must be large, d ≥ Ω(1/λ2). Graphs that achieve the optimal degree are called

Ramanujan graphs. We will call any graph that achieves d ≤ 1/λ2+o(1) as near-optimal or

almost Ramanujan.

Graph powering is a simple way to improve expansion that transforms a graph X to Xt,

where Xt has At
X

as its adjacency matrix¹. If X was a λ0-expander, then Xt has expansion

λt0. However, the degree also increases proportionally, d′ 󳓬 dt0, and the trade-off remains

the same. Hence, one needs a “derandomized power,” i.e., a low-degree subgraph of Xt

that retains its expansion. Since we wish to build graphs with symmetry, we will require

that if X 󳓬 Cay(G, S) is a Cayley graph, then X′ must also be a Cayley graph. In other

words, we want to efficiently compute a sparse subset of St that retains the expansion.

We now have a question about subsets of a group G, and the key property we need to

analyze is the bias of this set, as Cay(G, S) is an ε-expander if and only if S is an ε-biased

set. Recall that a set S ⊆ G is called an ε-biased set if for every non-trivial irreducible

representation, ρ, of G, we have 󰀂󳕮s∼S[ρ(s)]󰀂op ≤ ε. Since this notion of bias is important

for us, we first rephrase the technical result of our paper from the perspective of “bias

amplification”.

4.1 Bias Amplification

Let f : S → Mℓ(󳕬) be a matrix-valued function. The quantity 󰀂󳕮s∼S[f(s)]󰀂op is known

as the bias of the operator-valued function f with respect to S. The key idea in the prior

works (and ours) is to establish an “bias amplification” result of the following form:

Theorem 4.1.1 (Template Amplification Result). Let S be a finite set and λ0 ∈ (0, 1) be a

constant. For every λ > 0, there exists a deterministic polynomial time algorithm to construct

W ⊆ St of size |W | ≤ poly(|S|, 1/λ) such that

1. The more standard definition does not include multiplicities, i.e., Xt has an edge between vertices of
distance at most t.
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• Scalar Amplification For every function f : S → 󳕬 such that 󰀂f󰀂∞ ≤ 1,

if |󳕮s∼S[f(s)]| ≤ λ0 then we have |󳕮(s1,··· ,st)∼W [f(st) · · · f(s1)]| ≤ λ.

• Operator Amplification For every function f : S → Mℓ(󳕬) such that maxs󰀂f(s)󰀂op ≤ 1,

if 󰀂󳕮s∼S[f(s)]󰀂op ≤ λ0 then we have
󲷳󲷳󲷳󳕮(s1,··· ,st)∼W [f(st) · · · f(s1)]

󲷳󲷳󲷳
op

≤ λ.

Corollary 4.1.2 (Amplification of Cayley Graphs). If Cay(G, S) is a given λ0-expander, and

for any λ > 0, the set W be the output of Theorem 4.1.1. Set S′ 󳓬 {st · · · s1 | (s1, · · · , st) ∈ W}.

Then, Cay(G, S′) is a λ-expander of degree |W |.

Proof. Apply Theorem 4.1.1 for each irreducible representation ρ. □

Note that over Abelian groups, the scalar amplification suffices as the irreducible

representations of Abelian groups are 1-dimensional, i.e., scalar-valued functions called

characters. However, for general finite groups, one needs the amplification result for

operator-valued functions as the irreps are matrix-valued (of dimensions up to
󰁳
|G|).

Random Amplification is unknown! A first attempt would be to use matrix Chernoff

plus union bound to select a random subset S′ such that 󰀂󳕮s∈S′[ρ(s)]󰀂op is small for any

irreducible representation ρ. This works in the scalar case, but in general, this approach

requires |S′| ≥ Ω(log dim(ρ)). For non-abelian groups, we have irreducible representations

such that dim(ρ) 󳓬 poly(|G|); therefore, this cannot deduce the existence of constant-sized

subsets that achieve expansion. This difficulty is also present in the proof of the Alon–

Roichman theorem [AR94] and the reason why the only known generic upper bound for

non-Abelian groups uses Ω(log(|G|)) random generators to obtain an expander.

Prior Results on Bias Amplification

Scalar amplification Much of the earlier work has focused on the case of Abelian groups,

especially G 󳓬 󳖃n2 , as this has connections to other objects like error-correcting codes.
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Rozenman and Wigderson introduced the use of expanders for “scalar amplification”

via an iterated application of the expander mixing lemma. Alon (in an unpublished email²)

introduced the idea of using walks on an (auxiliary) expander graph X, whose vertices are

identified with elements of S. The set W ⊆ St is chosen to be the collection of all walks

of length (t − 1) on X. This technique gives a λ-biased set W , of size |W | ≤ O(|S|/λ4+o(1))

(cf., [TS17]), which is quite good but still sub-optimal.

Ta-Shma [TS17] managed to close the gap almost optimally (λ−2−o(1)) using the s-

wide replacement product to derandomize the above amplification. The s-wide replacement

product of Ben-Aroya and Ta-Shma [BATS08] is a higher-order version of the zig-zag

product [RVW00]. Using the collection of walks on the s-wide replacement product allows

for a much smaller collection W ⊆ St with nearly optimal size. This scalar technique

was later applied to the more general case of arbitrary Abelian groups by Jalan and

Moshkowitz [JM21].

Operator amplification To extend Ta-Shma’s approach to non-Abelian groups, it is nec-

essary to work with operator-valued functions, f : S → Mℓ(󳕬), as the irreducible represen-

tations are no longer of dimension one. To the best of our knowledge, only one general

result was known for general groups. Chen, Moore, and Russell [CMR13] analyzed the

above expander walk construction using a matrix version of the expander mixing lemma.

This gives an amplification procedure for Cayley graphs of general groups, but the result-

ing degree O(|S|/λ11) to achieve final expansion λ is sub-optimal.

4.1.1 Overview of Our Results

The main contribution of this work is the identification of appropriate natural linear

algebraic extensions to Ta-Shma’s amplification framework [TS17]. This gives an almost-

2. We thank the anonymous reviewer for pointing out this reference.
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optimal dimension independent generalization of the scalar amplification result to operator-

valued functions. Our result sharpens that of Chen, Moore and Russell [CMR13] by

reducing the degree from O(|S|/λ11) to O(|S|/λ2+o(1))

Theorem 4.1.3 (Operator Amplification (this work)). Let S be a finite set and λ0 ∈ (0, 1) be

a constant. For every λ > 0, there exists a deterministic polynomial time algorithm to construct

W ⊆ St of size |W | ≤ O(|S|/λ2+o(1)) such that for every function f : S → Mℓ(󳕬) with

󰀂󳕮s∼S[f(s)]󰀂op ≤ λ0 and maxs󰀂f(s)󰀂op ≤ 1, we have 󰀂󳕮w∼W[f(w)]󰀂op ≤ λ.

The key extension is a simple and yet extremely useful change in the bias operator (Πf )

defined by Ta-Shma, which is a central object in the analysis of both [TS17] and [JM21]. In

both these cases, f is scalar, and they define,

Πf : 󳕬[S] → 󳕬[S] where Πf · s 󳓬 f(s) · s .

However, this approach is not readily generalizable to operators, and the view we take

is that if f : S → Mℓ(󳕬), then Πf is actually an operator on 󳕬ℓ ⊗ 󳕬[S] defined as.

Πf : 󳕬ℓ ⊗ 󳕬[S] → 󳕬ℓ ⊗ 󳕬[S] where Πf (v ⊗ s) 󳓬 f(s) v ⊗ s .

In the Abelian case, we have ℓ 󳓬 1 and this is isomorphic to the setup by Ta-Shma. This

generalization is very natural, and we show that not only does the older machinery gel

well with this, but the proof remains intuitive with the different spaces neatly delineated.

More precisely, we first establish an operator version of the expander walk amplification,

and then we derandomize it using (a suitable version of) the s-wide replacement product.

Furthermore, since the result does not depend on the dimension, ℓ, we can use it even

for functions f : S → L(H) where L(H) is the space of bounded linear operators on an

arbitrary Hilbert space, H, possibly infinite dimensional. This is useful if the underlying

group is not finite but finitely generated by S.
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4.1.2 Notation

Since we deal with various vector spaces and graphs, we will find it useful to establish

some convenient notation for this chapter. The following is a summary for ready reference.

• The main multigraphs we study will be X and Y with vertices VX,VY and normalized

adjacency operators AX,AY .

• We denote vertices of X, Y by x,y and an ordered tuple of vertices by 󳑞x 󳓬 (x0, · · · , xt).

• We useu, v,w to denote arbitrary vectors inH andx,y for basis vectors of󳕬[VX],󳕬[VY]

where 󳕬[VX] is the complex vector space with the elements of VX being an orthonor-

mal basis.

• The tensored vector spaces have an induced inner product. For XH ≔ H ⊗ 󳕬[VX], it

is 〈v ⊗ x,w ⊗ x′〉 󳓬 〈v,w〉H〈x, x′〉. Similarly, we have one on XYH ≔ XH ⊗ 󳕬[VY].

• Orthogonal decomposition: XH 󳓬 X 󰀂
H ⊕ X⊥

H where X 󰀂
H ≔ span

󰀋
v ⊗ 󳑞1 | v ∈ H

󰀌
.

Here, 󳑞1 denotes the un-normalized all-ones vector. Similarly, XYH 󳓬 XY 󰀂
H ⊕XY⊥

H,

where XY 󰀂
H ≔ span

󰀋
z ⊗ 󳑞1 | z ∈ XH

󰀌
.

• The operator
◦
A denotes the extension of operator A to a tensor product of spaces

where it acts as identity on the other spaces. For example, AX acts on 󳕬[VX] and its

extension to XH is
◦
AX󳓬 IH ⊗ AX. However, if we were working on XYH, it would

be
◦
AX󳓬 IH ⊗ AX ⊗ IY instead³.

• Given an operator-valued function f : VX → L(H), the generalized bias operator is

defined on the basis as󰑖,

Πf : XH → XH, v ⊗ x 󰀁→ f(x) v ⊗ x.

3. The spaces will be self-evident and the use of the same notation should not be confusing.

4. An equivalent matrix definition isΠf ≔
󳕐

x∈VX
f(x) ⊗Ex,x where Ex,x ∈ 󳕬VX×VX is the diagonal matrix

with exactly one non-zero entry of value 1 in the row and column indexed by the vertex x.
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4.2 Derandomized Powering via Expander Walks

In this section, we establish a new operator analog of the expander walk–based bias amplifi-

cation procedure for scalars. An analysis of this scalar amplification was given by Ta-Shma

in [TS17]. We prove an operator analog that can amplify from any bias (Theorem 4.2.6)

which implies the main result below (Theorem 4.2.1), that amplifies from constant bias.

Theorem 4.2.1 (Operator Amplification via Expander Walks). Let X be a λ(X)-spectral ex-

pander, and let Wt be the collection of walks obtained from walks of length t on X. Then for any

operator valued function f such that
󲷳󲷳󳕮x∈VX

[f(x) ]
󲷳󲷳
op ≤ λ0 and maxx∈VX

󰀂f(x) 󰀂op ≤ 1, we have

󲷳󲷳󲷳 󳕮
󳑞x∈Wt

[f(xt) · · · f(x0)]
󲷳󲷳󲷳
op

≤ (2λ(X) + λ0)⌊t/2⌋ .

We remark that a precursor of these techniques, in the simpler setting of Abelian groups

appears in the pioneering work of Naor and Naor introducing ε-biased distributions over

the group 󳖃m2 using expanders [NN90].

This simpler amplification of Theorem 4.2.1 will be crucially used to bootstrap the

almost-optimal amplification. Moreover, it yields a construction of expanding Cayley

graphs close to any desired size, which will be required later.

This bias reduction procedure uses walks on an auxiliary expander graph. Here, we

only use its expansion property (as opposed to later when we rely on its structure for the

s-wide construction). With this, it is already possible to obtain 1/λ4+o(1) dependence on

the final degree of an λ-expander.

Theorem 4.2.2. Let S ⊆ G such that λ(Cay(G, S)) 󳓬 λ0 < 1. For every λ ∈ (0, 1) and constant

β ∈ (0, 1), we can find S′ ⊆ G in time poly(|S|, 1/λ0, 1/λ) such that λ(Cay(G, S′)) ≤ λ and

|S′| 󳓬 Oλ0

󰀓 |S|
λ4+β

󰀔
.
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4.2.1 Operator Norm Decay

Lemma 4.2.3. Let Wt ⊆ Vt+1
X

be the collection of all length t walks on the graph X and we define
◦
AX󳓬 IH ⊗ AX. Then, we have

󲷳󲷳󲷳󲷳 󳕮
󳑞x ∈Wt

[f(xt) · · · f(x0)]
󲷳󲷳󲷳󲷳
op

≤
󲷳󲷳󲷳Πf

󰀓 ◦
AX Πf

󰀔t󲷳󲷳󲷳
op

≤
󲷳󲷳󲷳󰀓 ◦AX Πf

󰀔2󲷳󲷳󲷳⌊t/2⌋
op

.

Proof.

Πf

󰀓 ◦
AX Πf

󰀔t
󳕮

x∈VX

[v ⊗ x] 󳓬 󳕮
󳑞x ∈Wt

[f(xt) · · · f(x0) v ⊗ xt] . (4.1)

This can be shown easily via induction on t, and we refer to Lemma 4.3.7 for a formal

proof of a more general statement. We use projection and lifting maps to move between

the spaces XH and H. Define PH : XH → H and LH : H → XH, as,

PH(w ⊗ x) 󳓬 w, LH(v) 󳓬 󳕮
x∈VX

[v ⊗ x] 󳓬 1
|VX |

v ⊗ 󳑞1 .

From the definition, 󰀂LH(v)󰀂 󳓬 󰀂v󰀂 󰀂󳑞1󰀂
|VX | 󳓬

󰀂v󰀂√
|VX |

and thus, 󰀂LH󰀂op 󳓬 1/
󰁳
|VX |. We can

use Cauchy-Schwarz to get that 󰀂PH󰀂op 󳓬
󰁳
|VX |. Now, we put this together to obtain a

simple expression on the quantity we need to bound

󲷳󲷳󲷳 󳕮
󳑞x ∈Wt

[f(xt) · · · f(x0)]
󲷳󲷳󲷳
op

󳓬 sup
󰀂v󰀂󳓬1

󲷳󲷳󲷳 󳕮
󳑞x ∈Wt

[f(xt) · · · f(x0)]v
󲷳󲷳󲷳
2

󳓬 sup
󰀂v󰀂󳓬1

󲷳󲷳󲷳󲷳PH 󳕮
󳑞x ∈Wt

[f(xt) · · · f(x0) v ⊗ xt]
󲷳󲷳󲷳󲷳
2

󳓬 sup
󰀂v󰀂󳓬1

󲷳󲷳󲷳PHΠf

󰀓 ◦
AX Πf

󰀔t
󳕮

x∈VX

[v ⊗ x]
󲷳󲷳󲷳
2

󳓬 sup
󰀂v󰀂󳓬1

󲷳󲷳󲷳PHΠf

󰀓 ◦
AX Πf

󰀔t
LH v

󲷳󲷳󲷳
2

≤
󲷳󲷳󲷳Πf

󰀓 ◦
AX Πf

󰀔t󲷳󲷳󲷳
op
󰀂PH󰀂op󰀂LH󰀂op

≤
󲷳󲷳󲷳Πf

󰀓 ◦
AX Πf

󰀔t󲷳󲷳󲷳
op

.
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The last inequality follows from submultiplicativity of the operator norm and the obser-

vation that 󰀂Πf 󰀂op 󳓬 󰀂f󰀂∞ ≤ 1. □

Now that we have reduced the problem to studying the operator norm, we will study

how the norm decays as we take walks. We use the decomposition, XH 󳓬 X 󰀂
H⊕X⊥

H where

X 󰀂
H ≔ span

󰀋
v ⊗ 󳑞1 | v ∈ H

󰀌
. The decay comes from two sources. For z ∈ X⊥

H, we get a

decay by λ(X) by the definition of X being an expander. Claim 4.2.4 shows that for z ∈ X 󰀂
H,

we get a decay from Πf , equal to the initial bias. We put this together in Theorem 4.2.1 to

obtain the desired exponential decay.

Claim 4.2.4. For z ∈ X 󰀂
H, we have,

󲷳󲷳󲷳(Πf z)󰀂
󲷳󲷳󲷳
2

≤
󲷳󲷳󲷳 󳕮
x∈VX

[f(x) ]
󲷳󲷳󲷳
op

· 󰀂z󰀂2 .

Proof. From definition of X 󰀂
H, we can assume that z 󳓬 u ⊗ 󳑞1. Computing we have,

󲷳󲷳󲷳󰀓Πf

󰀓
u ⊗ 󳑞1

󰀔󰀔 󰀂󲷳󲷳󲷳
2
󳓬 sup

w∈H : 󰀂w⊗󳑞1󰀂2󳓬1

󲷲󲷲󲷲󰁇w ⊗ 󳑞1,Πf(u ⊗ 󳑞1)
󰁈󲷲󲷲󲷲

󳓬 sup
w∈H : 󰀂w⊗󳑞1󰀂2󳓬1

󲷲󲷲󲷲󲷲󲷲
󰀭
w ⊗ 󳑞1,Πf

󰀕
u ⊗

󳕗
x∈VX

x

󰀖󰀮󲷲󲷲󲷲󲷲󲷲
󳓬 sup

w∈H : 󰀂w⊗󳑞1󰀂2󳓬1

󲷲󲷲󲷲󲷲󲷲
󰀭
w ⊗ 󳑞1,

󳕗
x∈VX

(f(x)u ⊗ x)
󰀮󲷲󲷲󲷲󲷲󲷲

󳓬 sup
w∈H : 󰀂w⊗󳑞1󰀂2󳓬1

󲷲󲷲󲷲󲷲
󳕗
x∈VX

〈w, f(x)u〉
󰁇
󳑞1, x

󰁈󲷲󲷲󲷲󲷲
󳓬 sup

w∈H : 󰀂w⊗󳑞1󰀂2󳓬1

󲷲󲷲󲷲󲷲
󰀟
w, |VX |

󰀕
󳕮

x∈VX

[f(x) ]
󰀖
u

󰀠󲷲󲷲󲷲󲷲
≤

󲷳󲷳󲷳 󳕮
x∈VX

[f(x) ]
󲷳󲷳󲷳
op
|VX |󰀂w󰀂󰀂u󰀂 󳓬

󲷳󲷳󲷳 󳕮
x∈VX

[f(x) ]
󲷳󲷳󲷳
op
󰀂z󰀂2 . □

The last line follows as 󰀂z󰀂2 󳓬 󰀂u󰀂2
󰁳
|Vx | and 󰀂w󰀂 󳓬 1√

|Vx |
.
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We show that for every two󰑜 steps of the walk, the norm of the (associated) operator

decays as follows.

Lemma 4.2.5. Let X be a λ(X)-spectral expander and let f be such that
󲷳󲷳󳕮x∈VX

[f(x) ]
󲷳󲷳
op ≤ λ0

and maxx∈VX
󰀂f(x) 󰀂op ≤ 1. Then,

󲷳󲷳󲷳󰀓 ◦AX Πf

󰀔2󲷳󲷳󲷳
op

≤ 1 − (1 − λ(X))2(1 − λ0) .

Proof. Let AJ 󳓬 J/|V(X)|, where J is the |V(X)| × |V(X)| all ones matrix. We can write

AX 󳓬 (1 − λ)AJ + λE, where λ 󳓬 λ(X) and 󰀂E󰀂op ≤ 1. Then

󲷳󲷳 ◦
AX Πf

◦
AX

󲷳󲷳
op ≤ (1 − λ)2

󲷳󲷳 ◦
AJ Πf

◦
AJ

󲷳󲷳
op + λ(1 − λ)

󲷳󲷳 ◦
E Πf

◦
AJ

󲷳󲷳
op

+ (1 − λ)λ
󲷳󲷳 ◦
AJ Πf

◦
E
󲷳󲷳
op + λ2󲷳󲷳 ◦

E Πf
◦
E
󲷳󲷳
op .

To analyze
󲷳󲷳 ◦
AJ Πf

◦
AJ

󲷳󲷳
op , let z ∈ XH be a unit vector which is decomposed as z 󳓬 z󰀂 + z⊥.

We have,

󲷳󲷳󲷳󰀓 ◦AJ Πf
◦
AJ

󰀔 󰀓
z⊥ + z󰀂

󰀔󲷳󲷳󲷳
2
󳓬

󲷳󲷳󲷳󰀓 ◦AX Πf
◦
AX

󰀔
z󰀂
󲷳󲷳󲷳
2

(As λ(AJ) 󳓬 0)

󳓬

󲷳󲷳󲷳 ◦
AX

󰀕󰀓
Πfz

󰀂
󰀔⊥

+

󰀓
Πfz

󰀂
󰀔 󰀂󰀖󲷳󲷳󲷳

2

󳓬

󲷳󲷳󲷳󰀓Πfz
󰀂
󰀔 󰀂󲷳󲷳󲷳

2

≤ λ0. (By Claim 4.2.4)

Thus,
󲷳󲷳 ◦
AJ Πf

◦
AJ

󲷳󲷳
op ≤ λ0. Recall that 󰀂Πf 󰀂op ≤ 1 since maxx󰀂f(x) 󰀂op ≤ 1, and we also have

5. This is the source of loss of a factor of 2 in the exponent (which leads to degree O(|S|/λ4+o(1)) rather
than the desired degree of O(|S|/λ2+o(1)) we will later achieve. Note that the same loss occurs in the original
zig-zag analysis of [RVW00], which was later remedied by the s-wise zig-zag of [BATS08].
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󰀂E󰀂op,
󲷳󲷳AJ

󲷳󲷳
op ≤ 1. Then,

󲷳󲷳 ◦
AX Πf

◦
AX

󲷳󲷳
op ≤ (1 − λ)2λ0 + 2λ(1 − λ) + λ2

󳓬 (1 − λ)2λ0 + 1 − (1 − λ)2,

󳓬 1 − (1 − λ)2(1 − λ0) . □

The amplification guarantee of Theorem 4.2.1 trivializes if 2λ(X) + λ0 ≥ 1. Nonethe-

less, we now show that amplification does occur under much weaker conditions, namely,

whenever
󲷳󲷳󳕮x∈VX

[f(x) ]
󲷳󲷳
op < 1 and the auxiliary graph X has expansion λ(X) < 1. This

regime of bias amplification was instrumental in the breakthrough SL 󳓬 L result of Rein-

gold [Rei05].

Theorem 4.2.6 (Operator Amplification via Expander Walks (strengthening of Theo-

rem 4.2.1)). Let X be a λ(X)-spectral expander and let Wt be the collection of walks obtained from

walks of length t on X. Then for any operator valued function f such that
󲷳󲷳󳕮x∈VX

[f(x) ]
󲷳󲷳
op ≤ λ0

and maxx∈VX
󰀂f(x) 󰀂op ≤ 1, we have

󲷳󲷳󲷳 󳕮
󳑞x ∈Wt

[f(xt) · · · f(x0)]
󲷳󲷳󲷳
op

≤
󰀅
1 − (1 − λ(X))2(1 − λ0)

󰀆 ⌊t/2⌋ .

Proof. Follows by combining Lemma 4.2.3 and Lemma 4.2.5. □

This establishes that expander walks can be used to derandomize powers of an operator,

itself given by an average of bounded operators, in the general case. In this derandomiza-

tion, we still have an exponential norm decay, but we only “pay additional randomness”

proportional to the degree of the auxiliary expander regardless of the number of operators.

4.2.2 Cayley Graphs and the Construction of Amplified Biased Sets

In this section, we will prove the following,
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Theorem 4.2.2. Let S ⊆ G such that λ(Cay(G, S)) 󳓬 λ0 < 1. For every λ ∈ (0, 1) and constant

β ∈ (0, 1), we can find S′ ⊆ G in time poly(|S|, 1/λ0, 1/λ) such that λ(Cay(G, S′)) ≤ λ and

|S′| 󳓬 Oλ0

󰀓 |S|
λ4+β

󰀔
.

Towards this, we first formalize the connection between bias of a special subset of

a group and the operator norm of a certain operator. The subset is obtained by taking

random walks over an expander graph as mentioned above. We then proceed to bound

this operator norm. Finally, we instantiate our construction with an explicit expander

graph due to [Alo21].

The particular case of S ⊆ G (for some group G) and the function f being a represen-

tation ρ on H leads to the amplification of biased sets. We will construct a new multiset

S′ ⊆ G such if 󰀂󳕮s∼S[ρ(s)]󰀂op ≤ λ0, then we have 󰀂󳕮s∼S′[ρ(s)]󰀂op ≤ λ ≪ λ0. Note here

that the construction of S′ is agnostic to ρ, and thus we can reduce the bias of all irreducible

representations simultaneously! Assume that we have a graph X on the vertex set S. For

s ∈ S, we have f(s) 󳓬 ρ(s) in this case. Let

S′ 󳓬 {stst−1 · · · s0 | (s0, s1, · · · st) ∈ Wt} ,

which will be our new amplified biased set. Using the homomorphism property of ρ, we

have the following simplification

󳕮
w󳓬(s0,...st)∈Wt

[f(st) · · · f(s0)] 󳓬 󳕮
(s0,...,st)∈Wt

[ρ(st) · · · ρ(s0)] 󳓬 󳕮
s′∈S′

󰀅
ρ(s′)

󰀆
, (4.2)

and thus, bias(S′) ≤
󲷳󲷳󲷳󲷳Πf

󰀓 ◦
AX Πf

󰀔t󲷳󲷳󲷳󲷳
op

(4.3)

where S′ is the new biased multiset of the construction and the second inequality follows

from the preceding calculation when Wt is a collection of walks on X.
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Instantiating the Construction

To construct S′, our construction requires an auxiliary expander graph X to perform walks

on. One convenient source (among several) is a recent construction of Alon.

Theorem 4.2.7 (Corollary of [Alo21, Thm. 1.3]). For every λ ∈ (0, 1), there exists a positive

integer mλ such that for every n ∈ 󳕷, there is an explicit construction of a graph X on mλn

vertices with degree at most 9/λ2 and λ(X) ≤ λ.

We now establish the key amplification lemma.

Lemma 4.2.8. Let S ⊆ G such that bias(S) 󳓬 λ0 < 1 and let ε0 be a constant such that

(1 + 2ε0)λ0 < 1. Then, for any λ > 0, we can explicitly compute S′ such that bias(S′) ≤ λ and

|S′| 󳓬 Oε0λ0

󰀓 |S|
λ4+4δ(λ0,ε0)

󰀔
where δ(λ0, ε0) 󳓬 log(3+6ε0)+log(1/ε0)

log(1/λ0) .

Proof. Pick a constant ε0 such that λ1 ≔ (1 + 2ε0)λ0 < 1 and use Theorem 4.2.7 to obtain

an explicit
󰀃
m|S|,d, ε0λ0

󰀄
-graph X. Let S1 be the multiset consisting of m copies of S. The

bias remains the same and now, |V(X)| 󳓬 |S1 |. We construct S′ by multiplying elements of

t-length walks on X where t 󳓬 ⌈2(1 + logλ1(λ))⌉. The size of S′ is

|S′| 󳓬 (m|S|) · dt 󳓬 mε0λ0 |S| ·
󰀕

3
ε0λ0

󰀖4+4 logλ1 λ

󳓬 mε0λ0

󰀕
3

ε0λ0

󰀖4
|S| · λ

−4 log
󰀓

3
ε0λ0

󰀔
log(1/λ1)

≤ Oε0λ0(|S|) · λ
−4

󰀣
1+

log
󰀓 3+6ε0

ε0

󰀔
log(1/λ0)

󰀤
.

Let ρ be any irreducible representation of G. From Eq. (4.3) and Theorem 4.2.1, we get,

󲷳󲷳󲷳󲷳 󳕮
s0···st∈S′

[ρ(st · · · s0)]
󲷳󲷳󲷳󲷳
op

≤ (2λ(X) + bias(S))t/2−1 ≤ (λ1)t/2−1 ≤ λ.□
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Using the amplification above, we now derive our first simplified explicit construction.

Theorem 4.2.2. Let S ⊆ G such that λ(Cay(G, S)) 󳓬 λ0 < 1. For every λ ∈ (0, 1) and constant

β ∈ (0, 1), we can find S′ ⊆ G in time poly(|S|, 1/λ0, 1/λ) such that λ(Cay(G, S′)) ≤ λ and

|S′| 󳓬 Oλ0

󰀓 |S|
λ4+β

󰀔
.

Proof. Pick a constant λ′ < min
󰀕
1
2 ,
󰀓
3
4

󰀔4β󰀖
. This choice ensures that δ(λ′, 1/2) ≤ β. Use

Lemma 4.2.8 with target expansion λ′ to obtain a set S1 with size |S1 | 󳓬 Oλ0,β(|S|) as

λ′ is a constant. Now use Lemma 4.2.8 again with S1 as the initial set, ε0 󳓬
1
2 and

the final expansion as λ to obtain S′. Thus, the final size is |S′| ≤ Oλ′
󰀓 |S1 |
λ4+δ(λ′,1/2)

󰀔
≤

Oλ0,β

󰀓 |S|
λ4+β

󰀔
. □

4.2.3 Explicit Expanders close to any desired size

As an application of Theorem 4.2.2, we demonstrate an explicit construction of Cayley

expanders of size n + o(n) vertices for every (large enough) n. Such a construction will

be crucial for us to prove Theorem 5.2.8. We cannot use existing results like the recent

work of Alon [Alo21] or the construction in [TS17]. This is because Alon’s construction

does not have a Cayley graph structure (which our proof utilizes). On the other hand, the

construction in [TS17] is a Cayley graph based on [LPS88], but it only guarantees a graph

of size O(n) rather than n + o(n).

Recall that SL2(p) is the group of 2× 2 invertible matrices over 󳕯p with determinant 1.

We obtain a base generating set for SL2(p) via the following result.

Theorem 4.2.9 ([Lub11]). There exists an absolute constant λ0 < 1 such that for every p > 17,

there exists an explicit generating set S (of constant size independent of p) for SL2(p), such that

λ (Cay(SL2(p), S)) ≤ λ0 .

Theorem 4.2.10 ([Che10]). For every n ≥ 23·215 , there exists a prime in [n,n + 4n2/3].
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Corollary 4.2.11. For any n > 29·215
, λ > 0, there is a deterministic polynomial time algorithm

to construct an (n′,d, λ)-graph Cay(SL2(p), S), where n′ 󳓬 n +O(n8/9) and d 󳓬 O(λ−4.1).

Proof. Find a prime p ∈ [n1/3 + 1,n1/3 +O(n2/9)], which exists due to Theorem 4.2.10, via

brute-force search. Since, SL2(p) is a group of order (p2 − 1)p, we have n ≤ |SL2(p)| ≤

n +O(n8/9). We use the constant-sized generating set S from Theorem 4.2.9 and amplify

using Theorem 4.2.2. □

4.3 Derandomized Powering via the s-wide Replacement Walk

We have seen in Section 4.2 that bias reduction via random walks on an expander X is

sub-optimal (by a factor of 2 in the exponent). We will derandomize this random walk con-

struction to achieve an almost optimal bias reduction. The idea is to introduce a new graph

Y, which has a much smaller degree, and to “simulate" a random walk onX via a walk on Y.

This is realized by a higher-order version of the zig-zag product [RVW00] called the s-wide

replacement product defined by Ben-Aroya and Ta-Shma [BATS08] (see Definition 4.3.5).

This section establishes our key technical result, which states that given any initial

operator valued function of constant bias < 1, we amplify the bias in an almost optimal way.

Theorem 4.3.1 (Operator Generalization of Theorem 24 [TS17]). Fix integers t ≥ s ≥ 1.

Let X be any d1-regular graph (with d1 a power of 2), and Y be any d2-regular Cayley graph

on 󳕯s log d1
2 . Let sWt be the collection of length t walks on the s-wide replacement product of X

and Y. Let H be a Hilbert space. For any operator valued function f : VX → L(H), satisfying

maxx∈VX
󰀂f(x) 󰀂op ≤ 1 and

󲷳󲷳󳕮x∈VX
[f(x) ]

󲷳󲷳
op :󳓬 λ0 ≤ λ(Y)2 − 2λ(X), we have

󲷳󲷳󲷳 󳕮
󳑞x ∈ sWt

[f(xt) · · · f(x0)]
󲷳󲷳󲷳
op

≤
󰀓
λ(Y)s + s · λ(Y)s−1

+ s2 · λ(Y)s−3
󰀔 ⌊t/s⌋

≤ Os (λ(Y))(1−os(1))t .

Furthermore, the size of the collection is |sWt | 󳓬 |X| · ds1 · d
t
2.
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Remark 4.3.2. Note that there is an inherent trade-off between the spectral bound ampli-

fication (or the operator norm) and the degree bound (or the number of walks), which

causes the suboptimality in how close this technique lets us approach the Ramanujan

bound. As in [TS17], the oλ(1) term we obtain from the bound above is (1/log(1/λ))c for

some c > 0 (see Theorem A.1.6 for the precise computation).

Section Outline In Section 4.3.1, we recall the s-wide replacement product and describe

random walks on it. Then, in Section 4.3.2, we formalize the distributions we work with

and reprove the result that if Y is a Cayley graph over any product group of appropriate

size, then it enables the transfer of pseudorandomness from Y toX. The key generalization

to operator-valued functions is established in Lemma 4.3.7, which is identical in spirit to

Eq. (4.1). In Section 4.3.3, we finish the amplification analysis similarly to [TS17]. In

Appendix A.1, we provide details about instantiating the setup by explicitly constructing

the graphs we need.

4.3.1 The s-wide Replacement Product and its Walks

Let X be a d1-regular graph. For each x ∈ VX and j ∈ [d1], let x[j] be the j-th neighbor of x.

Definition 4.3.3 (Locally Invertible Rotation Map). X admits a locally invertible rotation

map if there exists a bĳection φ : [d1] → [d1] such that for every (x, j) ∈ VX × [d1],

if x′ 󳓬 x[j], then, x′[φ(j)] 󳓬 x .

Example 4.3.4 (Cayley Graphs are Locally Invertible). Let G be a group and A ⊆ G where

the set A is closed under inversion. Label the neighbors of vertices in Cay(G,A) by

elements of A such that g[a] 󳓬 a · g. Then, Cay(G,A) is locally invertible as the map

φ : A → A defined as φ(a) 󳓬 a
−1 clearly satisfies the criteria,

if g′ 󳓬 g[a] 󳓬 a · g, then, g′[φ(a)] 󳓬 a
−1 · g′ 󳓬 g,
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for every g ∈ G, a ∈ A.

We now define the s-wide replacement product, a generalization of the standard

replacement product of graphs, which can be seen as the special case when s 󳓬 1.

Definition 4.3.5 (s-wide Replacement Product). Suppose we are given the following:

• A d1-regular graph X with a bĳection φ : [d1] → [d1] which defines a locally

invertible rotation map.

• A d2-regular graph Y on the vertex set [d1]s.

We define:

• For i ∈ {0, 1, . . . , s − 1}, we define Roti : VX × VY → VX × VY such that,

Roti((x, (a0, . . . ,as−1))) ≔ (x[ai], (a0, . . . ,ai−1,φ(ai),ai+1, . . . ,as−1)) ,

for every x ∈ VX and (a0, . . . ,as−1) ∈ VY 󳓬 [d1]s. (Note that the Y component of the

rotation map depends only on a vertex’s Y component, not its X component.)

• Denote by Xi, the operator on 󳕬[VX × VY] which acts on the natural basis via the

permutation Roti, and let AY be the normalized random walk operator of Y.

Then t steps of the s-wide replacement product are given by the operator

Xt−1 mod s
◦
AY · · · X1 mod s

◦
AY X0 mod s

◦
AY .

Observe that a walk on the s-wide replacement product yields a walk on the outer

graph X by recording the X component after each step of the walk. Since a walk is

completely determined by its intra-cloud steps, the number of t-step walks on the s-wide

replacement product is,
|VX | · |VY | · dt2 󳓬 n · ds1 · d

t
2 ≪ n · dt1 ,
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which, therefore, gives us a very sparse subset of all t-walks on X. Thus, the s-wide

replacement product will be used to simulate random walks on X while requiring a

reduced amount of randomness (as we shall see this simulation is only possible under

special conditions, namely, when we are uniformly distributed on each cloud).

4.3.2 The Collection of Derandomized Walks

We now describe the distribution obtained by the walks on the s-wide replacement product

using the language of operators.

Definition 4.3.6 (Operators and Distributions). Given a tuple of random walk operators󰑙

B 󳓬 (B0, · · · ,Bt−1) on 󳕬[VX] ⊗ 󳕬[VY] and a starting vertex x0 ∈ VX, we can define a

distribution induced by the walk using these operators. More precisely, D(B, x0) is the

distribution on (VX × VY)t+1 such that for every 1 ≤ ℓ ≤ t,

(Bℓ−1 · · ·B0)
󰀓
x0 ⊗ 1

|VY |
󳑞1
󰀔
󳓬 󳕮(󳑞x,󳑞y)∼D(B,x0)xℓ ⊗ yℓ. (4.4)

We typically suppress x0 as it will not matter and denote DX(B), and DY(B) to specify the

projections to VX, and VY respectively.

The next lemma is a generalization of Eq. (4.1), which we need for the s-wide replace-

ment walk. This can also be specialized to prove Eq. (4.1) by letting Y be a graph with one

vertex (and thus XH 󲧟 XYH). Recall that
◦
Πf (v ⊗ x ⊗ y) 󳓬 f(x) v ⊗ x ⊗ y.

Lemma 4.3.7 (Operator Generalization). For any tuple of random walk operatorsB, any operator

valued f, and any v ∈ H, x0 ∈ VX, we have
󰀓 ◦
Bt−1

◦
Πf · · ·

◦
B0

◦
Πf

󰀔 󰀕
v ⊗ x0 ⊗ 1

|VY |
󳑞1
󰀖
󳓬 󳕮

(󳑞x,󳑞y)∼D(B)
[f(xt−1) · · · f(x0) v ⊗ xt ⊗ yt] .

Proof. We prove the computation via induction on t. The base case is when t 󳓬 1.

6. Markov chain operators on VX × VY .
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󰀓 ◦
B0

◦
Πf

󰀔 󰀕
v ⊗ x0 ⊗ 1

|VY |
󳑞1
󰀖

󳓬
◦
B0

󰀕
f(x0) v ⊗ x0 ⊗ 1

|VY |
󳑞1
󰀖

󳓬 󳕮
(󳑞x,󳑞y)∼D(B)

[f(x0) v ⊗ x1 ⊗ y1] (Using Eq. (4.4) for ℓ 󳓬 1)

Let y0 󳓬
1

|VY |
󳑞1 and assume the statement holds for t − 1. Then,

󰀓 ◦
Bt−1

◦
Πf · · ·

◦
B0

◦
Πf

󰀔
(v ⊗ x0 ⊗ y0) 󳓬

◦
Bt−1

◦
Πf ·

0󳕘
i󳓬t−2

󰀓 ◦
Bi

◦
Πf

󰀔
(v ⊗ x0 ⊗ y0)

󳓬
◦
Bt−1

◦
Πf 󳕮

(󳑞x,󳑞y)∼D(B)
[f(xt−2) · · · f(x0) v ⊗ xt−1 ⊗ yt−1]

󳓬
◦
Bt−1 󳕮

(󳑞x,󳑞y)∼D(B)
[f(xt−1)f(xt−2) · · · f(x0) v ⊗ xt−1 ⊗ yt−1]

󳓬 󳕮
(󳑞x,󳑞y)∼D(B)

[f(xt−1) · · · f(x0) v ⊗ xt ⊗ yt] .

The second equality uses the inductive hypothesis, and the last two equalities use Eq. (4.4)

for ℓ 󳓬 t − 1 and ℓ 󳓬 t respectively. □

Using Definition 4.3.6, we further define the operators for the distributions we wish to

study.

Uniform Distribution Let us first capture, using this notation, the uniform distribution

on walks on X starting from x0 ∈ Vx. We define BU where for each i, Bi 󳓬 AX ⊗ IY for

every i. Then, for any ℓ, (AX ⊗ IY)ℓ 󳓬 Aℓ
X
⊗ IY . Therefore, we obtain that DX(BU) is the

t-step random walk distribution on X i.e., xi ∼ Ai
X
x0.

The s-wide Distribution This is the distribution obtained by the s-wide walks as de-

scribed in the earlier section. For 0 ≤ a ≤ b < s, we define,

B[a,b] 󳓬
󰀓
Xa

◦
AY ,Xa+1

◦
AY , · · · ,Xb

◦
AY

󰀔
.

We can view this random walk as occurring in two steps. The first step picks an initial

vertex y0 ∈ Y and the next picks the sequence of neighbors according to which we will
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perform the walk on Y. To formalize this, letAY 󳓬 (1/d2)
󳕐d2

j󳓬1 Pj wherePj are permutation

matrices and let J 󳓬 (j0, · · · , jb−a) ∈ [d2]b−a+1. For a fixed sequence of permutations J,

the conditional distribution (conditioned on J) is defined by,

B[a,b, J] 󳓬
󰀓
Xa

◦
Pj0 , Xa+1

◦
Pj1 , · · · ,Xb

◦
Pjb−a

󰀔
.

We would like these two distributions, i.e., the uniform distribution and the s-wide dis-

tribution , to be the same and a graph Y is said to be compatible with respect to (X,φ), if

for any fixed sequence, J, of a walk of length ℓ ≤ s, the distribution obtained on X via the

uniform sampling of y0, is the same as the usual ℓ-length walk on X from any fixed initial

vertex, x0. Thus, the randomness of sampling a vertex from Y is effectively transferred to a

random walk on X.

Definition 4.3.8 (Compatible). A graph Y is compatible with respect to (X,φ) if for every

0 ≤ a ≤ b < s, J ∈ [d2]b−a+1 and x0 ∈ VX, we have󰑍,

DX(B[a,b, J], x0) 󳓬 DX(BU, x0) 󳓬 Ab−a+1
X

x0 .

This compatible property is the same as the 0-pseudorandom property in [TS17]. We

renamed it as it is more of a structural compatibility property than a pseudorandomness

one. For the sake of completeness, we now prove that Cayley graphs are compatible with

every locally invertible graph.

Lemma 4.3.9 ([TS17, Lemma 29]). Let Y 󳓬 Cay(Gs, T ) where |G| 󳓬 d1. Then, Y is compatible

with respect to any X,φ.

Proof. Let x0 ∈ VX be arbitrary and let y0 󳓬 (r1, · · · , rs) ∼ Gs be sampled uniformly.

Since Y is a Cayley graph, the sequence of permutations, J, is equivalent to a sequence of

generators (t,1 , · · · , ts) ∈ Ts, and the permutation is group multiplication, y 󰀁→ tk · y.

For each 1 ≤ i ≤ s, let ti · yi−1 󳓬 (ri1, · · · , ris). The walk evolves as follows,

7. It is important to note that DY(B[a,b, J]) 󲧰 DY(BU).
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xi 󳓬 Xi(xi−1 , ti · yi−1) 󳓬 xi−1 [rii]

yi 󳓬 φ(ti · yi−1) 󳓬
󰀓
ri1, · · · , rii−1, φ(r

i
i), r

i
i+1, · · · , ris

󰀔
.

Compatibility requires that xi ∼ Ai
X
x0, which is inductively implied if, for every i, ri

i
is

uniform over G and independent of rj
j

for j 󲧰 i.

This claim is true initially as y0 is uniform over Gs. Assume it is true for yi−1. Since

ti,φ are fixed permutations, they do not affect the uniformity of the distribution of ri
k

for

any k. Since, φ acts only on the ith component, the independence of ri
k

and ri
i
, guaranteed

by inductive claim, implies the independence of ri
k

and φ(ri
i
). □

For a fixed x0 and J, we say that y0 gives rise to a sequence 󳑞z 󳓬 (z1, · · · , zt) if zi 󳓬 xi

where xi is as defined in the above proof.

Observation 4.3.10. Fix x0 ∈ VX and a sequence J. For any 󳑞z 󳓬 (z1, · · · , zk), the number of

y0 that gives rise to 󳑞z is ds−k2 .

Proof. From the proof of Lemma 4.3.9, we see that enforcing zi 󳓬 xi for each i starting

from i 󳓬 1, forces exactly ri to be fixed. Thus, the remaining (rk+1, · · · , rs) are free. □

4.3.3 The s-wide Operator Norm Decay

We are now ready to establish the key technical lemma in the analysis of the s-wide

replacement, which is an operator-valued generalization of the scalar version of present

in [TS17].

Lemma 4.3.11 (Simulation Lemma (generalization of Lemma 26 from [TS17])). Let 0 ≤

s1 ≤ s2 < s. For every pair of vectors z, z′ ∈ XH, we have,
󰀭

s2󳕘
i󳓬s1

󰀓 ◦
Xi

◦
AY

◦
Πf

󰀔 󰀕
z ⊗ 1

|VY |
󳑞1
󰀖
, z′ ⊗ 󳑞1

󰀮
󳓬

󰁇󰀓 ◦
AX Πf

󰀔s2−s1+1
z, z′

󰁈
.
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Proof. Let z 󳓬
󳕐

x vx ⊗ x and z′ 󳓬
󳕐

xwx ⊗ x. Since the expression is bilinear, it suffices to

prove the equation for v ⊗ x0, w ⊗ x′ for an arbitrary pair (x0, x′). Let t 󳓬 s2 − s1 + 1.

s2󳕘
i󳓬s1

󰀓 ◦
Xi

◦
AY

◦
Πf

󰀔
󳓬 󳕮

(js1 ,··· ,js2)∼[d2]t

󰀵󰀹󰀹󰀹󰀹󰀷
s2󳕘

i󳓬s1

󰀓 ◦
Xi

◦
Pji

◦
Πf

󰀔󰀶󰀺󰀺󰀺󰀺󰀸
Therefore, we can fix J 󳓬 (js1 , · · · , js2) ∈ [d2]t and prove it for that. Recall the notation

Wt that denotes the set of t-length walks on the graph X. Applying Lemma 4.3.7 to

B[s1, s2, J], we get,

s2󳕘
i󳓬s1

󰀓 ◦
Xi

◦
Pji

◦
Πf

󰀔 󰀕
v ⊗ x0 ⊗ 1

|VY |
󳑞1
󰀖

󳓬 󳕮
(󳑞x,󳑞y)∼D(B[s1,s2,J])

[f(xt−1) · · · f(x0) v ⊗ xt ⊗ yt]

󳓬

󳕗
󳑞x∈Wt

󳕮
y0∼VY

[f(󳑞x) v ⊗ xt ⊗ yt]󳕲[y0 gives rise to 󳑞x],

󳓬
ds−t1
ds1

󳕗
󳑞x∈Wt

f(󳑞x) v ⊗ xt ⊗ yt,

where f(󳑞x) 󳓬 f(xt−1) · · · f(x0). The last equality uses Observation 4.3.10. Therefore, the

conditioning on y does not change the distribution DX and when we take inner products,

we obtain,

󰀭
s2󳕘

i󳓬s1

󰀓 ◦
Xi

◦
Pji

◦
Πf

󰀔 󰀕
v ⊗ x0 ⊗ 1

|VY |
󳑞1
󰀖
,w ⊗ x′ ⊗ 󳑞1

󰀮
󳓬

ds−t1
ds1

󳕗
󳑞x∈Wt

󰀍
xt, x′

󰀎
〈f(xt−1) · · · f(x0) v,w〉

󳓬 󳕮
󳑞x∼DX(B[s1,s2,J])

󰀅󰀍
xt, x′

󰀎
〈f(xt−1) · · · f(x0) v,w〉

󰀆
.
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We now use󰑑 Lemma 4.3.7 for BU and take inner product to get,

󰀟󰀓 ◦
AX Πf

󰀔s2−s1+1
(v ⊗ x0) ,w ⊗ x′

󰀠
󳓬 󳕮

󳑞x∼DX(BU)

󰀅󰀍
xt, x′

󰀎
〈f(xt−1) · · · f(x0) v,w〉

󰀆
.

From Lemma 4.3.9, we know that Y is compatible and thus, DX(B[s1, s2, J]) 󳓬 DX(BU).

Thus, the right-hand side (and so, the left-hand sides) of these two equations above are

equal. □

The s-step Decay Just like the amplification in Section 4.2 was analyzed by studying

the norm decay obtained in every two steps (cf.,Lemma 4.2.8), this amplification via

the s-wide walks will be analyzed by bounding the norm decay for steps of length s

using Lemma 4.3.11 similarly to [BATS08, TS17]. We will use the shorthand Li ≔
◦
Xi

◦
Πf

◦
AY .

The goal is to bound 󰀂Ls−1 · · · L0󰀂op which controls the bias of the set obtained by

s-long, s-wide walks (cf.,proof of Eq. (4.2)). Equivalently, we will bound 〈(󳕑i Li)v0,ws〉

for any unit vectors󰑣 v0,ws ∈ XYH. We will use the orthogonal decomposition,

XYH :󳓬 XH ⊗ 󳕬[VY] 󳓬 XY 󰀂
H ⊕ XY⊥

H where XY 󰀂
H ≔ span

󰀋
z ⊗ 󳑞1 | z ∈ XH

󰀌
.

For i ≥ 1, we inductively define the vectors vi,wi, zi and bound their norms¹󰑓,

vi 󳓬 Li−1v
⊥
i−1, zs−i 󳓬

󰀓 ◦
Xs−i

◦
Πf

󰀔∗
ws−i+1, ws−i 󳓬

󰀓 ◦
AY

󰀔∗
z⊥s−i (4.5)

󰀂vi󰀂 ≤ λ(Y)i, 󰀂zs−i󰀂 ≤ λ(Y)i−1, 󰀂ws−i󰀂 ≤ λ(Y)i . (4.6)

Lemma 4.3.12. For any v0,ws and 0 ≤ r ≤ s − 2 we have,

8. As we only want to work with the space XH here, we can assume in the application of the lemma that
|VY | 󳓬 1. Else, one could directly apply Eq. (4.1) and use the observation that DX(BU) is the same as the
random walk distribution on X.

9. Here we deviate from our notation and use v,w for vectors in XYH.

10. By definition 󰀂vi󰀂 ≤ 󰀂
◦
AY v⊥

i−1󰀂 ≤ λ(Y)󰀂vi−1󰀂.The computation is similar for w and z.
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Ls−1 · · · L0v0 󳓬 vs +

s−1󳕗
i󳓬0

Ls−1 · · · Liv󰀂i

L∗s−1ws 󳓬 ws−1 + z
󰀂
s−1

L∗r · · · L∗s−1ws 󳓬 wr + z
󰀂
r +

s−1󳕗
i󳓬r+1

L∗r · · · L∗i−1z
󰀂
i

Proof. The lemma follows readily from a calculation, and we omit its proof. □

Theorem 4.3.13 (Operator Generalization of Theorem 24 [TS17]). Let X be any d1-regular

graph and Y be a Cayley graph on 󳕯s log d1
2 . Let sWt be the collection of t-length s-wide walks on

the s-wide replacement product on X and Y. For any operator-valued function f on VX, such that

maxx∈VX
󰀂f(x) 󰀂op ≤ 1 and

󲷳󲷳󳕮x∈VX
[f(x) ]

󲷳󲷳
op :󳓬 λ0 ≤ λ(Y)2 − 2λ(X),

󲷳󲷳󲷳 󳕮
󳑞x ∈ sWt

[f(xt) · · · f(x0)]
󲷳󲷳󲷳
op

≤
󰀓
λ(Y)s + s · λ(Y)s−1

+ s2 · λ(Y)s−3
󰀔 ⌊t/s⌋

.

Proof. Using Lemma 4.3.7, we can repeat the proof of Eq. (4.2) to see that,
󲷳󲷳󲷳 󳕮
󳑞x ∈ sWt

[f(xt) · · · f(x0)]
󲷳󲷳󲷳
op

≤ 󰀂Lt · · · L0󰀂op ≤ 󰀂Ls−1 · · · L0󰀂 ⌊t/s⌋op .

We now use Lemma 4.3.12 to bound this operator norm.

〈Ls−1 · · · L0v0,ws〉 󳓬 〈vs,w0〉 +

s−1󳕗
r󳓬0

󰁇
Ls−1 · · · Lrv󰀂r ,ws

󰁈

󳓬 〈vs,ws〉 +

s−1󳕗
r󳓬0

󰁇
v
󰀂
r , L

∗
r · · · L∗s−1ws

󰁈

󳓬 〈vs,ws〉 +

s−1󳕗
i󳓬0

󰁇
v
󰀂
r ,wr + z

󰀂
r

󰁈
+

s−2󳕗
r󳓬0

s−1󳕗
i󳓬r+1

󰁇
v
󰀂
r , L

∗
r · · · L∗i−1z

󰀂
i

󰁈

󳓬 〈vs,ws〉 +

s−1󳕗
i󳓬0

󰁇
v
󰀂
r , z

󰀂
r

󰁈
+

s−2󳕗
r󳓬0

s−1󳕗
i󳓬r+1

󰁇
v
󰀂
r , L

∗
r · · · L∗i−1z

󰀂
i

󰁈
.

The last step uses
󰁇
v
󰀂
r ,wr

󰁈
󳓬

󰁇 ◦
AY v

󰀂
r , z⊥r

󰁈
󳓬 0. Using Eq. (4.6), we get

󰁇
v
󰀂
r , z

󰀂
r

󰁈
≤ λ(Y)s−1.
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To bound the last term, we finally use Lemma 4.3.11. Let v󰀂r 󳓬 v′r ⊗ 󳑞1, and z
󰀂
i
󳓬 z′

i
⊗ 1

|VY |
󳑞1.

Then,
󰁇
v
󰀂
r , L

∗
r · · · L∗i−1z

󰀂
i

󰁈
󳓬

󰁇
v′r,

󰀓 ◦
AX Πf

󰀔i−r
z′i
󰁈

(Using Lemma 4.3.11)

≤
󲷳󲷳󲷳󰀓 ◦AX Πf

󰀔i−r󲷳󲷳󲷳
op
󰀂z′i󰀂󰀂v

′
r󰀂

≤ λ(Y)2⌊ i−r2 ⌋ λ(Y)r+s−i−1 ≤ λ(Y)s−3,

where the penultimate inequality uses Theorem 4.2.1 and plugs in the assumption that

2λ(X) +
󲷳󲷳󳕮x∈VX

[f(x) ]
󲷳󲷳
op ≤ λ(Y)2. Substituting this back in our expression above gives us

the result. □

This concludes the proof of the key technical theorem, i.e., the operator amplification

as outlined in Theorem 4.1.1. One needs to initialize this product and verify that |W |

is indeed as small as we need, |W | ≤ O|S|
󰀃
λ−2−o(1)󰀄 . However, this instantiation closely

follows Ta-Shma’s [TS17], and we relegate the computations to Appendix A.1. Apart from

this calculation, this finishes the proof of Theorem 1.2.2
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Applications



CHAPTER 5

PSEUDORANDOM OBJECTS

Laqa: Seeing these mulberry trees blossom reminds me of home.

Janki: Me too, I am glad TTIC has these trees around. I have been meaning to ask,

you often speak about expanders with symmetry. Why do we need this added

symmetry?

Laqa: Okay, so a classical code is a subspace that you can construct out of a graph.

Janki: Yes, and if the graph is an expander, you get a code with a large distance.

Laqa: Alright, but a quantum CSS code is slightly more complicated. To construct it, we

need a “2-dimensional chain complex” whereas a graph is a 1-D complex. One way

people constructed these “2-D” complexes was via topology, but such constructions

often do not have expansion, and the distance is not great.

Janki: So instead, we want a bottom-up combinatorial method that starts from two ex-

panders?

Laqa: Exactly! One can get a 2-D complex by tensoring two 1-D complexes, but such a

tensor product based code can never have a distance better than
√
n.

Janki: Just like the cartesian product of two complete graphs will have eigenvalue
√
n?

Laqa: Yes, much like that. An exciting recent development has been the idea of getting

around this by quotienting this tensor product. The hope is that the complex shrinks

more than the distance. But to do that, we need the base graphs to have symmetry.

In general, symmetry helps when we need more structure in pseudorandom objects

like a quantum expander, or a dimension expander.
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5.1 Explicit Quantum and Classical Codes

The area of quantum error correction has had tremendous progress in recent years, partic-

ularly in the construction of quantum low-density parity-check (QLDPC) codes. These are

codes where membership can be tested via checks acting only on a small number of qubits,

which is a very useful property for physical implementations. Since the classic toric code

by Kitaev [Kit97], there has been a flurry of activity [TZ14, EKZ20, KT21, HHO21, PK21,

PK22, LZ22, DHLV23] culminating in the breakthrough construction of asymptotically good

QLDPC codes by Panteleev and Kalachev [PK22]. Specifically, the above constructions

yield a special form of quantum code known as Calderbank–Shor–Steane (CSS) code, first

described in [CS96, Ste96]. These can be specified by a pair of subspaces CX, CZ ⊆ 󳕯n2
satisfying C⊥

Z
⊆ CX (which also implies C⊥

X
⊆ CZ). The quantum CSS codes are LDPC

when C⊥
X

and C⊥
Z

have generating sets consisting of sparse vectors. The code C 󳓬 (CX, CZ)

is said to have blocklength n, with distance d and the dimension k defined as,

d 󳓬 min
󰀋
|c| | c ∈ (CX \ C⊥Z ) ∪ (CZ \ C⊥X )

󰀌
and k 󳓬

󰀃
dim(CX) − dim(C⊥Z )

󰀄
.

A code is called asymptotically good if d, k 󳓬 Ω(n). In all these works, the code is

constructed using a pair of expander graphs, each with symmetries of some groupG. This

construction connects symmetric expanders with the area of quantum error correction and

provides a very concrete motive to study the explicit construction of such graphs.

Quasi-Cyclic Codes Graphs with symmetry also yield classical linear codes with sym-

metry. While such a symmetry does not improve its distance or dimension, it is often

helpful for algorithmic purposes. For example, the cyclic symmetry of cyclic codes, i.e.,

codes that are invariant under the action of 󳖃N where N is the block length, leads to

efficient encoding and decoding algorithms. Babai, Shpilka, and Stefankovich [BSS05]

showed that cyclic codes cannot be asymptotically good LDPC codes.
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Quasi-cyclic codes are a generalization of cyclic codes in which symmetry is only under

a subgroup, 󳖃ℓ 󰃑 󳖃N, where N 󳓬 nℓ. The parameter ℓ is called the circulant size, and the

closer it is to N, the closer the code is to being cyclic. Interestingly, with this relaxation,

good quasi-cyclic codes are known to exist, as shown by Chen, Peterson, and Weldon

[CPW69]. More recently, Bazzi and Mitter [BM06] gave a randomized construction for

any constant n > 2 and showed that it attains Gilbert–Varshamov bound with rate 1/n.

Quasi-cyclic codes have been extensively studied and are very useful in practice (e.g., their

LDPC counterparts are part of the 5G standard of mobile communication [LBM+18]).

The Pantaleev-Kalachev construction The work [PK21] gives a construction of good

quasi-cyclic codes and quantum CSS codes. The follow-up work [PK22], when applied to

the Abelian group 󳖃ℓ, improves the dimension of the quantum CSS code.

Theorem 5.1.1 ([PK21, PK22]). Let X be󳖃ℓ-lift of a d-regular graph on n-vertices with λ2(X) ≤

ε · d. If ε > 0 is sufficiently small and d is a sufficiently large constant, then,

• There exists a good quasi-cyclic LDPC code of blocklength Θ(nℓ) and circulant size Θ(ℓ).

• There exists an LDPC quantum CSS code of distance Θε,d(ℓ) and dimension Θ(nℓ).

For this application, the constant degree regime is essential for two reasons. The

locality of the code is essentially d, and thus, it has to be constant for it to be LDPC.

Moreover, this construction relies on a brute-force search over subspaces of 󳕯d2 .

To achieve these, [PK21] picks a d-regular expander onn vertices and creates a random

ℓ-lift which is expanding with high probability Theorem 2.1.3.

The distance achieves the almost-linear bound only when the lift is large, and thus,

lifts of exponential size are preferred. By the upper bound in Theorem 2.1.3, better than

exponential size lifts break expansion for abelian groups.
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5.1.1 Derandomized Codes

We restate our main results about the explicit construction of graphs with abelian lifts.

This summarizes Theorem 3.0.1 and Theorem 2.2.1.

Theorem 1.2.1 (Explicit Abelian Lifts). For large enough n and constant degree d ≥ 3, given

an abelian group G, and any fixed constant ε ∈ (0, 1), we can construct a d-regular graph X on

Θ(n|G|) vertices, in deterministic polynomial time, such that,

1. X is G-lift of a graph X0 on Θ(n) vertices. Thus, G ⊆ Aut(X).

2. If |G| ≤ exp
󰀃
nδ(d,ε)󰀄 , then λu(X) ≤ 2

√
d − 1 + ε.

3. If |G| ≤ exp
󰀃
nδ

󰀄
and also d ≥ d0(ε), then λu(X) ≤ ε · d.

4. If |G| ≤ exp
󰀓
cnd−

1
2
󰀔
, then λu(X) ≤ O(

√
d logd).

5. If |G| 󳓬 exp
󰀃
cndδ

󰀄
for δ ∈ [−1/2, 1), then λu(X) ≤ O

󰀃
d

2+δ
3 logd

󰀄
.

While the corollary follows straightforwardly from Theorems 1.2.1 and 5.1.1, we show

the computations for completeness.

Corollary 5.1.2. We have explicit polynomial time construction of each of the following,

1. Good quasi-cyclic LDPC code of block length N and any circulant size up to N/polylog(N)

or Θ(N/log(N)).

2. Quantum LDPC code with distance Ω(N/log(N)) and dimension Ω(N).

Proof. We use Theorem 1.2.1 in the exponential regime to construct X explicitly. When

ℓ 󳓬 exp(Θ(n)), N 󳓬 nℓ and we get quantum LDPC codes with distance Θ(ℓ) 󳓬 Θ(N/logN).

For quasi-cyclic codes, we can set ℓ ≤ 2n
δ0 with some fixed δ0 ∈ (0, 1), and explicitly

construct X which is a 󳖃ℓ-lift by Theorem 1.2.1. By Theorem 5.1.1, there is a code with

circulant size Θ(ℓ) and log(N) ≤ logn + nδ0 ≤ 2nδ0 (for n sufficiently large). Thus, the

construction works for circulant sizes ℓ 󳓬 O
󰀓
N/(logN)1/δ0

󰀔
. □
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5.2 Other Pseudorandom Objects

We will now discuss some applications of the operator amplification technique from Chap-

ter 4, which allows us to improve other pseudorandom objects. All the "pseudorandom"

objects below are expanders (with various structural properties), and for each of these,

we amplify their spectral bound to almost Ramanujan. We stress that our amplification

preserves the underlying structure and, therefore, produces another object with the same

properties. We first give an overview of the results, and the details will follow.

5.2.1 Overview of Results

General Expanders A very interesting and useful application is that the amplification

for Cayley graphs implies an expansion result for general families of (regular) expander

graphs. This highlights how studying structured graphs (like Cayley graphs) can shed

light on general graphs.

Theorem 5.2.1 (Amplifying General Expanders). Let {Xi}i∈󳕷 be a family of (d0, λ0)-expanders

where λ0 < 1 is a constant. For any (target) λ ∈ (0, 1) and Xi, we can explicitly¹ construct a

(d, λ)-expander, X′
i
, on the same vertex set, where d 󳓬 O(d0/λ2+oλ(1)). Moreover, the construction

is local in the sense that edges in X′
i

correspond to short walks in Xi.

Quantum Expanders Roughly speaking, a quantum expander is an operator defined by

d complex matrices, whose (linear) action on quantum states has a constant spectral gap.

Quantum expanders were defined in [AS04, BASTS08, Has07a], and Hastings [Has07b]

showed that the Ramanujan bound also applies to them. Existing explicit constructions

are far from the Ramanujan bound. In [Har07], Harrow gave a generic construction using

expanding Cayley graphs, which is explicit if the group has a large irreducible represen-

tation and admits efficient Quantum Fourier Transform (QFT). Both these conditions are

1. See Definition 1.3.6
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satisfied by the symmetric group Symn using the generating family by Kassabov [Kas07]

and the QFT algorithm by Beals [Bea97].

By amplifying the expansion of the generators of [Kas07], we give the first explicit

family of almost Ramanujan quantum expanders.

Corollary 5.2.2 (Explicit Almost Ramanujan Quantum Expanders). For every λ ∈ (0, 1),

there is an explicit infinite family of (efficient) (O(1/λ2+o(1)), λ)-quantum expanders.

Monotone Expanders Monotone expanders are expanders whose edge set can be de-

composed into a constant number of monotone partial maps on [n]. Bourgain and Yehu-

dayoff [BY13] gave the only known explicit construction of monotone expanders with

constant degree. There are two natural notions of degree for a monotone expander. The

usual vertex degree and the number of monotone maps. Our almost Ramanujan trade-off

is with respect to the vertex degree (and the monotone degree is polynomial in the vertex

degree).

Corollary 5.2.3 (Almost Ramanujan Monotone Expanders). For every λ > 0, there is an

explicit family {Xi}i∈󳕷 of (vertex) d-regular dO(1)-monotone expanders with d 󳓬 O(1/λ2+o(1))

and λ(Xi) ≤ λ.

The approach is similar to that used for Theorem 5.2.1; we express it as a sum of

permutation matrices and amplify their expansion, obtaining the following result. It

would be really interesting to obtain an almost Ramanujan trade-off with respect to the

monotone degree.

Dimension Expanders Loosely speaking, dimension expanders (over any field 󳕯) are

a linear algebraic extension of expanders: a collection of d linear maps on 󳕯n, which

significantly expands (the span of) any vector space of dimension below n/2. They were

defined by Barak et al. in [BISW01]. Over complex numbers, any quantum expander is a
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dimension expander. More generally, Dvir and Shpilka [DS09] proved that a monotone

expander directly yields a dimension expander over every field. We give spectral almost

Ramanujan expanders with the additional property of dimension expansion. Addition-

ally, if the starting dimension is small enough, then we achieve almost doubling of the

starting dimension See Corollary 5.2.25 for a precise statement.

Improving the Kazhdan Constant The Kazhdan constant K(G, S) of a finitely generated

group G, with respect to a generating set S, is a quantitative version of Property (T) which

has been used to construct explicit expanders (e.g., Margulis [Mar88]). We show that

this can be amplified by considering a slightly different version called the average Kazhdan

constant which directly relates to the bias of the set S. This is interesting as typically the

bound on the Kazhdan constant is used to construct expanders, but here, we construct

expanding generating sets to improve the constant!

Corollary 5.2.4 (Amplifying Average Kazhdan Constant). Let G be a finitely generated group

and S a finite set of generators such that the average Kazhdan constant K(G, S) is equal to 2 · (1−λ0)

for some constant λ0 ∈ (0, 1). For every λ ∈ (0, 1), there is a set S′ ⊆ G such that

1. K(G, S′) ≥ 2 · (1 − λ), and thus, K(G, S′) ≥ 2 · (1 − λ).

2. |S′| 󳓬 Oλ0(|S|/λ2+o(1)), and

3. S′ can be found in time poly(|S|/λ) assuming an oracle for group operations on G.

The improved constants and the generating sets have algorithmic implications, and we

mention two of them.

· Dimension expanders - Lubotzky and Zelmanov [LZ08] showed that the image of a

generating set of a group under an irreducible representation gives a dimension

expander and its expansion is controlled by its Kazhdan constant.
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· Product replacement algorithm - uses random walks on k-tuples of groups elements.

Lubotzky and Pak [LP00] showed that the mixing time of the algorithm relates to the

Kazhdan constant of certain lattice groups like SLn(󳖃), assuming Property (T). This

crucial assumption was proven in complete generality² recently by Kaluba, Kielak

and Nowak [KKN21]. In particular, we have a mixing time bound of 4 log |G|
K(G,S)2 .

We can improve both results by using our amplified generating set (Corollary 5.2.19).

5.2.2 Permutation Amplification

The defining representation - (ρdef(σ),󳕬n) for Symn is defined as the representation that

maps a permutation to the matrix defining it. More formally, ρdef(σ)ei 󳓬 eσ(i) for every

unit basis vector ei of 󳕬n. It is a fact that Vdef 󳓬 Vtriv ⊕ Vstandard where Vstandard is

an irreducible non-trivial representation. Note that if we are given a set {P1, · · · ,Pr} of

permutation matrices acting on 󳕬n, we can identify a set S 󳓬 {σ1, · · · ,σr} ⊆ Symn such

that ρdef (σi) 󳓬 Pi.

Corollary 5.2.5 (Permutation Amplification). Let P 󳓬 {P1, · · · ,Pr} be a collection of permu-

tation matrices such that λ(󳕮i∼[r][Pi]) ≤ λ0. Then, for any λ ∈ (0, 1), we can explicitly construct

a collection P′ such that

1. λ (󳕮M∼P′[M]) ≤ λ,

2. |P′| ≤ O
󰀓
|P|/λ2+o(1)

󰀔
and

3. each P′
i
∈ P′ is a product of at most Oλ0 (log(1/λ)) many matrices from P.

Proof. Let Pi 󳓬 σi. Applying Theorem 4.3.13 to the set S 󳓬 {σi} we get a larger set

of permutations, S′ of the form σ′ 󳓬 σi1 ◦ · · · ◦ σik where k 󳓬 Oλ0 (log(1/λ)). By the

2. [KKN21] prove that Aut(Fn), the automorphism group of the free group generated by n elements,
has Property (T). This implies Property (T) for quotients of Aut(Fn), which includes SLn(󳖃).
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decomposition of the defining representation, we have that

Spec
󰀓
󳕮

M∼P′
[M]

󰀔
󳓬 Spec

󰀓
󳕮

σ′∼S′
󰀅
ρdef(σ′)

󰀆 󰀔

󳓬 {1} ∪ Spec
󰀓
󳕮

σ′∼S′
󰀅
ρstandard(σ′)

󰀆 󰀔
.

where the 1 corresponds to the eigenvalue from the trivial representation. Since the

operator amplification reduces the bias of every non-trivial irreducible representation, it

also does so for Vstandard. □

5.2.3 Arbitrary Expanders via Permutation Amplification

We can make any family of bounded degree expander graphs into an almost Ramanu-

jan family while preserving their adjacency structure. First, we recall König’s theorem

that says that the adjacency matrix of a d-regular graph can be expressed in terms of

permutation matrices.

Theorem 5.2.6 (König). LetAX be the normalized adjacency matrix of ad-regularn-vertex simple

graph X. Then, there exists d permutation matrices P1, . . . ,Pd ∈ 󳕻n×n such that

AX 󳓬
1
d

d󳕗
j󳓬1

Pj .

Claim 5.2.7. The permutations in Theorem 5.2.6 can be found in time poly(n).

Proof. We view AX as encoding the adjacency relation of a bipartite graph with vertex

bipartition (A 󳓬 V(X),B 󳓬 V(X)). This bipartite graph is d-regular so it has at least one

perfect matching M, which can be found in poly(n) time. We remove this matching M,

obtaining a (d − 1)-regular graph, and repeat until the resulting graph is empty. □

Our general transformation into an almost Ramanujan bound follows by using Claim 5.2.7

to obtain an initial set of permutation matrices and amplify then using Corollary 5.2.5.
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Theorem 5.2.8 (Main I (Formal version of Theorem 5.2.1)). Let {Xi}i∈󳕷 be a family of

d0-regular λ0-expanders with constant λ0 < 1. For any λ ∈ (0, 1) and any expander Xi, we

can deterministically compute a d-regular λ-expander X′
i

with d 󳓬 Oλ0(d0/λ2+o(1)) in time

poly(|V(Xi)|). Moreover, the construction is local in the sense that edges in X′
i

correspond to short

walks in Xi. More precisely, if the adjacency matrix of Xi is

AXi
󳓬

1
d0

d0󳕗
j󳓬1

Pj,

where P1, . . . ,Pd0 are permutation matrices, then the adjacency matrix of X′
i

is

AX′
i
󳓬

1
d

d󳕗
j󳓬1

P′j,

where eachP′
j
is the product of at mostk 󳓬 Oλ0(log(1/λ))permutation matrices amongP1, . . . ,Pd0 .

5.2.4 Explicit Almost Ramanujan Quantum Expanders

Quantum expanders were defined in [AS04, BASTS08, Has07a] and have found many

applications in quantum information theory. For instance, they can be used in the con-

struction of designs and gates sets [HH09], in quantum statistical zero-knowledge (QSZK)

[BASTS08], in detecting EPR pairs [AHL+14] and in the study of entanglement [Has07a].

While a usual degree-d expander graph X 󳓬 (V ,E) is given by d permutation matrices

acting on a vector space󳕬[V], a quantum expander is given by d (suitable) linear operators

acting on quantum states (i.e., PSD matrices of trace 1). The normalized adjacency matrix

of a λ-expander shrinks the ℓ2-norm of vectors orthogonal the all ones function by a

factor of λ. Similarly, a quantum expander shrinks the Frobenius norm of PSD matrices

orthogonal ³ to the identity matrix (the quantum analog of the all-ones function) by a

factor of λ (the quantum expansion parameter).

3. With respect to the Hilbert–Schmidt inner product.
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Definition 5.2.9 (Quantum Expander [AHL+14]). The (super) operator Φ : 󳕬N×N →

󳕬N×N is an (N,d, λ) quantum expander if

· “Degree” – The operator Φ can be expressed as a sum of d linear operators as follows,

Φ(ρ) 󳓬 󳕐d
i󳓬1 BiρB

†
i

where󰑖
󳕐d

i󳓬1 B
†
i
Bi 󳓬 IN.

· “Expansion” – The second largest eigenvalue󰑜 of Φ as a linear map is ≤ λ.

In [Has07b], Hastings showed that the Ramanujan bound also applies to quantum

expanders, and that d random unitaries get arbitrarily close to the bound. However,

such a construction cannot be efficiently implemented and thus used in applications like

[AHL+14], which rely on existing explicit constructions (e.g., [BASTS08, Har07]) that are

far from the Ramanujan bound and thus give sub-optimal results.

Harrow [Har07] proved that one can construct a quantum expander using an expander

Cayley graph over a group for which efficient Quantum Fourier Transform (QFT) is known.

Theorem 5.2.10 (Harrow [Har07]). Let G be a group and S ⊆ G be a multiset such that

Cay(G, S) is a λ-spectral expander. Let Vµ be an irreducible representation of G of dimension N.

Then, there exists an (N, |S|, λ)-quantum expander. Furthermore, if the group G admits an efficient

QFT and logN 󳓬 Ω(log|G|), then the quantum expander is explicit.

Until now, we did not have almost-Ramanujan expanders over such a group. Since

the symmetric group admits such a QFT algorithm [Bea97], we deduce the existence of

explicit families of almost Ramanujan quantum expanders by applying our amplification

to the Cayley graphs over the symmetric group due to Kassabov [Kas07].

Corollary 5.2.11 (Explicit Almost Ramanujan Quantum Expanders). For every λ ∈ (0, 1),

there is an explicit infinite family of (efficient) (O(1/λ2+o(1)), λ)-quantum expanders.

4. A useful special case is when each Bi is a (normalized) unitary.

5. If ρ satisfies Tr(ρ) 󳓬 0, then 󰀂Φ(ρ)󰀂2 ≤ λ󰀂ρ󰀂2, where 󰀂ρ󰀂2 ≔
󰁳

Tr(ρ†ρ).
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5.2.5 Explicit Almost Ramanujan Monotone Expander

We now show how to obtain almost Ramanujan monotone expanders starting from the

explicit construction in Bourgain and Yehudayoff [BY13]. First, we recall the definition of

a monotone graph. All graphs we consider are undirected.

Definition 5.2.12 (Monotone partial map). A partial map f : [n] → [n] is monotone if for

every pair {x,y} for which f is defined, if x < y, we have f(x) < f(y).

Definition 5.2.13 (Monotone Graph). A bipartite graph X 󳓬 ([n]A ⊔ [n]B,E) is a d-

monotone graph if there are d monotone partial maps f1, . . . , fd : [n] → [n], such that the

edges set E is the following disjoint union,

E 󳓬

d󳕉
i󳓬1

{(vA, fi(v)B) | v ∈ Domain(fi)}.

We observe that there are two notions of degree of a monotone graph: the usual

vertex degree and the number of monotone functions. Clearly, if a graph is d-monotone,

all vertex degrees are at most d. The converse is not necessarily true; for example, the

complete bipartite graph on 2 vertices on each side, K2,2, has vertex degree 2, but the

graph is not 2-monotone. We stress that our almost Ramanujan bound is with respect to

the usual notion of vertex degree (and keeps the number of monotone maps polynomial

in the vertex degree).

Definition 5.2.14 (Monotone Vertex Expander). We say that X 󳓬 (A 󳓬 [n]A ⊔ B 󳓬 [n]B,E)

is a d-monotone expander if it is a d-monotone graph and there exists δ > 0 such that for

all A′ ⊆ A with |A| ≤ n/2, we have |∂(A′)| ≥ (1 + δ)|A′|, where ∂(A′) is the set of vertices

in B adjacent to A′.

Theorem 5.2.15 (Bourgain and Yehudayoff [BY13]). There is an explicit family {Xn}n∈󳕷 of

d-monotone vertex expanders with d 󳓬 Θ(1).
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We will work with a spectral definition of a monotone expander. For a bipartite graph

X, we define its biadjacency matrix, BX such that the adjacency matrix AX 󳓬
󳔑󳔕
󳔓

0 BX

BT
X

0

󳔒󳔖
󳔔
.

Precisely, for a monotone graph X 󳓬 ([n]A ⊔ [n]B,E), we have (BX)ij 󳓬 󳕲[(iA, jB) ∈ E].

Note that if X is d-regular, then BX is d-regular. We will define the graph X via BX

throughout.

Definition 5.2.16 (Spectral Monotone Expander). We say that a d-monotone graph, X, is a

λ-spectral monotone expander if λ(X) 󳓬 max{|λ2(BX)|, |λn(BX)|} < λ.

It is well-known that starting from a monotone expander (not necessarily a vertex

regular graph), we can add monotone partial functions to obtain a monotone graph of

regular (vertex) degree that is still expanding. We use this to establish the following,

Corollary 5.2.17. There is explicit family {Xn}n∈󳕷 of d0-regular 2d0-monotone expanders with

λ(Xn) ≤ λ0 < 1 and d0 󳓬 Θ(1). Furthermore, the unnormalized adjacency matrix of Xn can be

written as a sum of d0 permutation matrices, each corresponding to two monotone maps.

Proof. Let {X′
n}n∈󳕷 be the family in Theorem 5.2.15. Let X 󳓬 X′

n be a fixed d0-regfular

graph that is also d0-monotone expander with the maps {fi}.

For each monotone function fi, we define its “complement”, fi, as the (unique) mono-

tone partial function fi such that fi ∪ fi is a total function. Let Y be the 2d0-monotone

graph corresponding to the maps {fi, fi}. Then, we have

BY 󳓬

d0󳕗
i󳓬1

Pi ,

where Pi 󳓬 Mfi +M
fi

and (Mfi)x,y 󳓬 [fi(x) 󳓬 y].

Each matrix Pi is a permutation matrix as fi∪ fi is a total function. Adding more maps

preserves the constant vertex expansion parameter, which (together with having constant
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vertex degree) implies constant spectral expansion bounded away from 1 (see [Vad12,

Theorem 4.9]). Thus, {Yn}n∈󳕷 is the required family. □

In the amplification process, we will be multiplying permutation matrices rather than

just composing monotone maps since the latter operation can result in a map with an

empty domain. We now establish the derandomized spectral amplification of monotone

expanders.

Corollary 5.2.18 (Almost Ramanujan Monotone Expanders). For every λ > 0, there is an

explicit family {Xi}i∈󳕷 of (vertex) d-regular dO(1)-monotone expanders with d 󳓬 O(1/λ2+o(1))

and λ(Xi) ≤ λ.

Proof. Let {X′
n}n∈󳕷 be the family in Corollary 5.2.17. Fix X 󳓬 X′

n and let P1, . . . ,Pd0 ∈

󳕻n×n be the permutation matrices guaranteed by Corollary 5.2.17, where each Pi 󳓬

Mfi +M
fi

. Use Corollary 5.2.5 to obtain a collection P′ of size |P′| 󳓬 d ≔ O(1/λ2+β) such

that,
P′ 󳓬

󰀋
σ | σ 󳓬 Pi1 · · · Pik for some ii, · · · , ik ∈ [d0]

󰀌
.

Our final bipartite monotone graph will be Y given by BY 󳓬
󳕐

σ∈P′ σ. To compute its

monotone degree, we observe that,

Pi1 · · ·Pik 󳓬

󳕗
gi∈{fi,fi}

Mgi1
· · ·Mgik

󳓬

󳕗
gi∈{fi,fi}

Mgi1◦gi2◦ ··· ◦gik ,

where gi1 ◦ gi2 ◦ · · · gik is the composed map which is monotone (possibly with an empty

domain). This means that we can have at most 2k monotone maps (and at least one

since Pi1 · · ·Pik 󲧰 0). Therefore, the total number of maps is at most d · 2k 󳓬 dO(1) as

k 󳓬 Oλ0(log(1/λ)). □
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5.2.6 Amplifying the Average Kazhdan Constant

The Kazhdan constant is a notion of “spectral gap” (and so it is related to bias) for discrete

groups, which predates (and was central to) the study of expansion in finite groups and

graphs. In particular, we can work with finitely generated groups that can have infinitely

many irreducible representations on more general Hilbert spaces, possibly of infinite di-

mension. Nonetheless, we can still apply our operator version of Ta-Shma’s amplification

procedure as it is independent of dimension and works for any unitary representation ρ.

Therefore, we amplify the average Kazhdan constant, which also amplifies the Kazhdan

constant. We now define these two parameters formally.

Let G be a group generated by a finite set S of generators. For a representation ρ, define

K(G, S, ρ) ≔ inf
v∈H : 󰀂v󰀂2󳓬1

max
g∈S

󰀂ρ(g) v − v󰀂22

K(G, S, ρ) ≔ inf
v∈H : 󰀂v󰀂2󳓬1

1
|S|

󳕗
g∈S

󰀂ρ(g) v − v󰀂22

󳓬 2
󰀕
1 −

󲷳󲷳󲷳 󳕮
g∼S

[ρ(g)]
󲷳󲷳󲷳
op

󰀖
.

Using these, we can define the Kazhdan constants by taking the minimum over repre-

sentations,

K(G, S) ≔ inf
󰀋
K(G, S, ρ) | (ρ,H) irreducible and non-trivial unitary representation

󰀌
.

K(G, S) ≔ inf
󰁱
K(G, S, ρ) | (ρ,H) irreducible and non-trivial unitary representation

󰁲
.

Here, the first definition is the usual definition of the Kazhdan constant of G with

respect to generators S, whereas the second definition is an average version of the Kazhdan

constant as in the work of Pak and Zuk [PZ02].

Corollary 5.2.19 (Amplifying Average Kazhdan Constant). LetG be a finitely generated group

and S a finite set of generators such that the average Kazhdan constant K(G, S) is equal to 2 · (1−λ0)
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for some constant λ0 ∈ (0, 1). For every λ ∈ (0, 1), there is a set S′ ⊆ G such that

1. K(G, S′) ≥ 2 · (1 − λ), and thus, K(G, S′) ≥ 2 · (1 − λ).

2. |S′| 󳓬 Oλ0(|S|/λ2+o(1)), and

3. S′ can be found in time poly(|S|/λ) assuming an oracle for group operations on G.

Remark 5.2.20. Note that the above amplification for K immediately implies the same

amplification for K (since the maximum is at least the average, K(G, S) ≤ K(G, S)) .

Moreover, we remark that the above amplification can also similarly improve the constant

of Lubotzky’s property (τ) (the latter being a weaker version of property (T)), so it is more

general and applies to expansion in many more discrete groups [RL10].

We will now apply this corollary to a specific family of representations, which will give

a simple improvement to the bounds on the dimension expander constructed in [LZ08].

5.2.7 Explicit Almost Ramanujan Dimension Expanders

Dimension expanders were defined in [BISW01] motivated by applications in theoretical

computer science. A conjectured construction based on irreducible representations was

suggested by Wigderson to hold over every field. The conjecture was subsequently estab-

lished by Lubotzky and Zelmanov [LZ08] for fields of characteristic zero. We now define

dimension expanders, explain the [LZ08] proof, and our amplification in this setting.

Definition 5.2.21 ((ε,γ) Dimension Expander). Let 󳕯 be a field, d ∈ 󳕷, ε > 0, V be a

vector space of dimension n and T1, . . . , Td : V → V be linear transformations. We say that

(V , {Ti}i∈[d]) is an (ε,γ)-dimension expander if for every subspace W ⊆ V of dimension

at most γn, we have dim(W +
󳕐d

i󳓬1 Ti(W)) ≥ (1 + ε) · dim(W).

Remark 5.2.22. Observe that if the maps Ti are restricted to being permutation matrices,

and the expansion condition is restricted only to subspaces W generated by elementary
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basis vectors, one obtains the usual definition of vertex expansion of graphs. Thus,

dimension expanders may be viewed as a linear-algebraic extension of expander graphs.

For an irreducible unitary representation ρ, there exists an associated representation󰑙 adjρ.

The construction in [LZ08] relates dimension expansion with the Kazhdan constant. Their

result gives a dimension expander, which gives expansion for all subspaces W, such that

dim(W) ≤ n/2, but their expansion guarantee is significantly stronger when dim(W) is

smaller. To obtain this, we first state a simple improvement to a computation in [LZ08].

Claim 5.2.23. Let W,W′ ⊆ 󳕬d be two vector spaces. Let P,P′ be orthogonal projectors onto

W,W′, respectively. Then,

Re
󰀃
Tr(PP′)

󰀄
󳓬 Tr(PP′) ≥ dim(W ∩W′).

Proof. Let U0 󳓬 W ∩ W′, U1 󳓬 W ∩ U⊥
0 and U2 󳓬 W′ ∩ U⊥

0 , with orthonormal bases

{u1, . . . ,uk}, {a1, . . . ,aℓ} and {b1, . . . ,bm}, respectively. We can write P and P′ as

P 󳓬

k󳕗
i󳓬1

uiu
T
i +

ℓ󳕗
i󳓬1

aia
⊺
i and P′ 󳓬

k󳕗
i󳓬1

uiu
⊺
i +

m󳕗
i󳓬1

bib
⊺
i .

Using linearity and orthogonality, we obtain

Tr(PP′) 󳓬

k󳕗
i󳓬1

󰀂ui󰀂2 Tr(uiu
⊺
i ) +

ℓ󳕗
i󳓬1

m󳕗
j󳓬1

󰀍
ai,bj

󰀎
Tr(aib

⊺
j )

󳓬 k +

ℓ󳕗
i󳓬1

m󳕗
j󳓬1

󰀍
ai,bj

󰀎2 ≥ dim(U0),

here in the last step we used that 󰀂ui󰀂2 󳓬 Tr(uiu
⊺
i
) 󳓬 1. □

6. Let sln(󳕬)) 󳓬 {tr(A) 󳓬 0 | A ∈ Mn(󳕬)}. Equip the space with the Frobenius inner product defined
as 〈A,B〉 󳓬 tr(A†B) where A† is the conjugate transpose. For any finite-dimensional unitary representation
ρ : G → 󳕾n, we have an adjoint representation (adjρ, sln) where the action is by conjugation adjρ(g) ·
A 󳓬 ρ(g) · A · ρ(g)−1. Since conjugation by unitary matrices preserves the trace, sln is closed under the
representation. Moreover, it is unitary as,󰀍

adjρ(g)A, adjρ(g)B
󰀎
󳓬 tr

󰀃
ρ(g)A†ρ(g)†ρ(g)Bρ(g)−1

󰀄
󳓬 〈A,B〉.
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The above claim is a variant of the one used in [LZ08] to prove their main result. By

plugging in Claim 5.2.23 in their proof we obtain,

Proposition 5.2.24 (Adapted from [LZ08] using Claim 5.2.23). Let ρ : G → 󳕾󳕬n be a uni-

tary irreducible representation. Then (󳕬n, {ρ(g)}g∈S) is (1 − λ − on(1), 1/2 −O(λ))-dimension

expander, where 2(1 − λ) :󳓬 K(G, S, adjρ).

Corollary 5.2.25. Let λ > 0 be any fixed constant. Then, there exists an explicit infinite family of󰀓
1 − λ − on(1), 1

2 −O(λ)
󰀔
-dimension expanders.

Proof. Pick a family of groups {Gn}n such that each Gn satisfies the condition of Corol-

lary 5.2.19; for example, one can take any non-abelian finite simple group. By definition,

for any such G, we have K(G, S, adjρ) ≥ K(G, S) and therefore we obtain a set S′ such that

K(G, S′, adjρ) ≥ 2(1 − λ) for the given λ. We can now apply Proposition 5.2.24. □

Remark 5.2.26. Forbes and Guruswami [FG15] point out that the quantum expander con-

struction of Harrow [Har07] also yields a dimension expander (with a similar construction

of the dimension expanders from [LZ08]). As mentioned earlier, monotone expanders are

dimension expanders over any field [DS09, DW10]. Moreover, the Bourgain and Yehuday-

off [BY13] construction of monotone expanders with constant generating set yields such

dimension expanders with a constant generating set.

5.2.8 Diameter of Finite Groups

The study of the diameter of Cayley graphs can take many forms, e.g., it can be with

respect to every generating set (as in the celebrated Babai–Seress conjecture [BS88]) or

with respect to some constant size generating set as in [BKL89]. Here, we explore the

latter case.

First, recall that any n-vertex degree-d graph has diameter at least logd−1(n). On the

other hand, it is well-known that expansion directly implies diameter at most C · logd−1(n)
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for some constant C ≥ 1 (depending on the expansion). The best upper bound a spectral

proof can provide is 2 due to the Alon–Bopanna bound for spectral expansion. Using our

amplification to almost-optimal spectral expansion, deduce that any expanding group G

has a constant degree-d Cayley expander of diameter 2 + od(1).

Lemma 5.2.27. Suppose
󰀋
Cay(Gi, Si)

󰀌
i∈󳕷 is a family of bounded degree Cayley expanders. Then,

there exists a family
󰀋
Cay(Gi, S′i)

󰀌
i∈󳕷 of constant degree-d Cayley expanders with diameter at

most (2 + od(1)) · logd−1(Gi).

Proof. We apply Theorem 1.2.2 to the family {Cay(Gi, Si)}i∈󳕷 obtaining a new family of󰀋
Cay(Gi, S′i)

󰀌
i∈󳕷 of (d, λ)-expanders with d 󳓬 1/λ2+β for some sufficiently small constants

λ,β > 0. Let Ai be the normalized adjacency matrix of Cay(Gi, S′i) and ni 󳓬 |Gi |. Let eg

be the indicator vector of some fixed g ∈ Gi. Note that

󰀂(Ai − J/ni)teg󰀂2 ≤ λt 󳓬 d−t/(2+β) < 1/|Gi |,

for t 󳓬 (2 + 2β) · logd(|Gi |) 󳓬 (2 + od,β(1)) · logd−1(|Gi |).

This implies that At
i
eg is supported on all elements of Gi, and thus the diameter of Gi

is at most t. □
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CHAPTER 6

DERANDOMIZED HOMOMORPHISM TESTING

Laqa, Piro, and Janki are out at the Promontory on a bright sunny day.

Piro: Pick one, a clever proof, or the “right definition”.

Janki: I love an ingenious proof; I mean, there is no “Definitions from the book”.

Laqa: Maybe we should write one, then. I would include Eymard’s definition of the

algebra norm from the 60s. I learned it while working on a problem, and it captured

the underlying computation so beautifully that the proof wrote itself!

Piro: ‘Algebra norm’ rings a bell. Is it the trace norm of the convolution operator? Al-

though I do not recall where it stems from.

Laqa: It is, but that definition I would not put in the book! It is a generalization of the

spectral norm to functions on non-abelian groups.

Janki: Hmm, I do agree with you; one cannot overestimate the importance of Bassalygo

and Pinsker defining expanders...

Laqa: ...or of Cayley defining groups abstractly and their “graphical representations”.

In this chapter, we address Question 1.0.2 and show that small-bias sets fool functions with

a small algebra norm. Using this, we show that small-bias sets can efficiently approximate

Gowers’ U2-norm. This gives a randomness-efficient homomorphism test in the low-

soundness regime. More generally, we prove that expanding Cayley graphs satisfy a

“degree-2” expander mixing lemma. This structural result implies a derandomized version

of the Babai–Nikolov–Pyber (BNP) lemma and the fooling of U2-norm. Since the theorem

statement is technical and the setup is different, we give a lengthier introduction.
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6.1 Introduction

An important problem in theoretical computer science is efficiently testing if a function

f : G → H correlates with some homomorphism between groups G and H. Such tests

are widely used in constructions of probabilistically checkable proofs (PCPs), hardness of

approximation, locally testable codes, and many other areas of computer science. Re-

cently, there has been an interest in studying such tests for non-abelian groups. For

example, in quantum complexity, entanglement testing [NV17] involves homomorphism

testing over the (non-Abelian) Pauli group, which played an essential role in the proof

of MIP*=RE [JNV+21]. Additionally, such non-Abelian tests have been used to construct

better PCPs [BK21] and for hardness of approximation results [BKM22].

The famous three-query randomized Blum–Luby–Rubinfield [BLR90] (BLR) test is as

follows: pick two uniformly random group elements x,y ∈ G and check if the homo-

morphism property holds for this pair, namely, if f(x)f(y) 󳓬 f(xy). This simple local test

surprisingly sheds light on a global property of the function: if a function f : 󳖃n2 → 󳖃2

passes the test with non-trivial probability, then the function must have a non-trivial

correlation with some homomorphism.

This test can be used for any pair of groups G,H (assuming one can sample from G)

and requires 2 log|G| random bits. A randomness-efficient version of the test that has been

studied is the derandomized BLR test wherein x is uniformly sampled from G as before,

but y is chosen from a sparse pseudorandom set S ⊆ G. If S is constant-sized, then the

randomness is reduced to log |G| +O(1), which is almost optimal.

The study of such derandomized linearity (and low-degree) tests has found significant

applications, particularly in the development of Probabilistically Checkable Proofs (PCPs).

For example, the derandomization results in [BSVW03] have enabled the construction

of PCPs and Locally Testable Codes of nearly linear size. Additionally, derandomized

parallel execution [ST00, HW03] of the BLR test has facilitated the creation of PCPs with
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low amortized costs. We extend this study of derandomized tests and investigate the

question,

Given a function f : G → H that passes the derandomized BLR test with probability δ, what can

one conclude about the function f?

An ideal conclusion would be that the function f is close to a true homomorphism ϕ

in some metric, i.e., 󰀂f −ϕ󰀂 ≤ θ(δ). This is achievable in the “99%-regime”, when the test

passing probability, δ, is close to 1. This is also called the unique-decoding regime, as there

is a unique homomorphism, ϕ, near the given function, f. The unique homomorphism

can often be constructed via a majority decoding procedure. There are many results in this

setting [BCH+95, Far00, BP18] including derandomized ones [SW04]. In particular, for

any finite group G and an arbitrary (not necessarily finite) group H, [Far00] constructs

a homomorphism close in Hamming metric to the given function f if the test passing

probability is ≥ 10/11.

However, the situation is significantly more complex in the low-soundness or “1%-

regime”, wherein the function performs barely better than a random function, i.e., the test

passing probability is 1
|H| + δ. Firstly, one cannot always hope to find a homomorphism

close in the Hamming metric. A folklore counterexample due to Coppersmith (also in

[BOCLR07]) gives a function f : 󳖃3k → 󳖃3k−1 that passes the test with probability 2/9 but

it is far away from every homomorphism in the Hamming metric. More interestingly, for

some pair of groups G,H, the only homomorphism from G → H might be the trivial one.

In this case, we might not be able to conclude that f is close to the trivial homomorphism,

but we can deduce something about the global structure of f. To do so, however, we

need to better understand how the set of functions, from G to H, relates to the set of

homomorphisms. For instance, Fourier analysis yields that any function f : 󳖃n2 → 󳕬 can

be expressed as a linear combination of homomorphisms. In general, representation theory

gives a similar relation for the more general setting of functions f : G → 󳕾t, where G is
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any finite group, and󳕾t is the group of t × t unitary matrices. Therefore, this setting is a

natural starting point for investigating the general question of derandomized testing for

non-abelian groups. Moreover, this setting (which we work with throughout our paper)

has exciting connections to quantum linearity testing!

6.1.1 Our Setup: Matrix-valued functions

We will work with functions from an arbitrary finite group G to the group of t× t unitary

matrices, f : G → 󳕾t, and will use the following inner product to measure correlation, i.e.,

〈f,g〉tr 󳓬 󳕮x∼G[tr(g∗(x)f(x))]. We wish to design a randomness-efficient variant of BLR

such that if a function f : G → 󳕾t passes such a test, then the function f correlates with a

homomorphism or a function arising from a homomorphism.

This setting has been studied in prior works [MR15, NV17, GH17], most notably in the

context of quantum low-degree tests. The results of [MR15] and [GH17] are particularly

relevant to our result, and we will discuss them in detail shortly. The other result by

Natarajan and Vidick [NV17] gives a BLR-like test for homomorphism testing of functions,

f : Pn → 󳕾t where Pn is the n-fold tensor product of the Pauli group (also known as

the Weyl-Heisenberg group). This was initially developed for entanglement testing [NV17]

and later became a crucial component in the MIP∗
󳓬 RE proof [JNV+21].

While our setting encompasses their setup and has identical notions of correlation, our

results do not directly apply to the quantum linearity test. This is because their test works

with a specific presentation of the Pauli group due to additional constraints related to

quantum measurements. Nevertheless, there might be exciting connections between our

results and those in quantum homomorphism testing.

Before we state our results, we briefly define some relevant concepts and discuss the

challenges associated with this setting. See Section 1.3 to recall the definitions.

Every finite group G has a finite set of irreducible representations (irreps) 󰁥G, which are
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the building blocks of complex-valued functions on G. In the case of Abelian groups,

all the irreducible representations are one-dimensional and given by characters, also

called Fourier characters. These characters also form an orthogonal basis for the space of

complex-valued functions. For general finite groups, the orthogonal basis is given by the

set of matrix coefficients of irreps, i.e.,
󰀋
ρ(x)i,j | ρ ∈ 󰁥G i, j ≤ dim(ρ)

󰀌
. Just as in the Abelian

case, we use f̂(ρ) 󳓬 󳕮x[f(x)ρ(x)] to represent the coefficient corresponding to irrep ρ, which

is now a matrix. Such a basis also exists for matrix-valued functions, f : G → 󳕬t×t.

Challenges with this general setting

This general setting has three key differences from the original setting of BLR f : 󳖃n2 → 󳖃2:

(i) G is an arbitrary (not necessarily Abelian) finite group, (ii) H is continuous and not

discrete, and (iii) the test passing probability is low (low-soundness regime). While each

of these generalizations presents its own challenges, these are compounded when they

are all together. In order to clearly illustrate the issues, let us focus only on the case of

complex-valued functions, f : G → 󳕾1 ⊆ 󳕬. The entire discussion is relevant when the

functions are matrix-valued, but this special case captures all the difficulties.

Hamming norm is unsuitable Since the codomain is continuous, the Hamming norm is

inappropriate as it is sensitive to small perturbations. For example, let G be a finite

group such that the only homomorphism to 󳕾1 is the trivial one. These groups

exist and are known as quasirandom groups. If f(x) is set to e−iε for half of the inputs

from G and e−2iε for the rest, the BLR test passes with probability roughly 1
8 . But f

has a normalized Hamming distance of 1 from the closest homomorphism, i.e., the

trivial homomorphism. However, f is actually close to the trivial homomorphism in

L2-distance, 󰀂f−g󰀂2 󳓬 󳕮x[|f(x)−g(x)|2]. This suggests why previous works [GH17,

BFL03, MR15] in this setting have used the L2-norm.

Need to look at larger representations For abelian groups G, every function f : G → 󳕬
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can be expressed as a linear combination of homomorphisms from G → 󳕬. This

is no longer true when G is non-abelian. As we have seen in the preliminaries, we

need to rely on homomorphisms ρ : G → 󳕾t for t potentially as large as
󰁳
|G|,

even though the original function maps to scalars. Thus, it is not immediate how

to formalize the statement “f correlates with the homomorphism ρ,” as f : G → 󳕬

whereas, ρ : G → 󳕾t for t > 1. There have been two non-equivalent solutions to

this in prior work,

1. Clip¹ a representation – Let gρ : G → 󳕬 be defined as gρ(x) 󳓬 Vρ(x)U∗ for a

homomorphism ρ, and V ,U ∈ 󳕬1×t. One can now check if f correlates with gρ.

This is the route taken by Gowers and Hatami [GH17].

2. Large Fourier Mass – If the representation ρ is irreducible, one can look at how

much of the function can be explained by the Fourier basis elements correspond-

ing to ρ, i.e., {ρi,j}i,j. Note that these elements are no longer homomorphisms

(unlike for Abelian groups), but 󰀂f̂(ρ)󰀂HS being large is another way to formal-

ize f being correlated with ρ, as 󰀂f󰀂2 󳓬
󳕐

ρ dim(ρ)󰀂f̂(ρ)󰀂2HS by Parseval’s. This

approach is followed by [MR15].

Representation sizes depend on test-passing probability Ideally, we would want to show

the correlation of the function with a representation ρ of dimension 1. But the above

discussion shows why that is too much to ask for. Nevertheless, one might still want

to bound the dimension of these representations, the intuition being that the smaller

the dimension, the closer f is to being a true homomorphism. We will see that this

can be done, but this dimension must depend on the test passing probability δ. Such

a dependence is unavoidable, as the following counterexample illustrates. Let Γ be

a non-abelian group containing an irrep of dimension d ≃ poly(|Γ |), say ρ. Consider

1. For functions f : G → 󳕾t for t > 1, the representations that need to be considered could also be of
dimension t′ < t. We still refer to it as “clipping”.
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the group G 󳓬 󳖃n2 × Γ and its irrep, ψ 󳓬 triv ⊗ ρ. The function f(x) 󳓬 ψ(x)1,1 passes

the randomized BLR test if either of the query points is in the kernel of this irrep.

Since 󳖃n2 lies in the kernel, the test passes with probability at least 1
|Γ | . However, by

construction, f is entirely supported on a d-dimensional irrep, ψ.

Known Results

As previously mentioned, despite the outlined challenges, researchers have achieved in-

triguing results in this matrix-valued function setting that we are interested in. Specifically,

Moore and Russell [MR15] as well as Gowers and Hatmai [GH17] explored the homomor-

phism testing problem for functions from any finite group G to󳕾t. It is important to note

that their studies did not explicitly focus on this question from a testing perspective. Nev-

ertheless, their findings can be easily adapted into a BLR-type linearity testing framework.

Additionally, when translated into homomorphism testing terminology, their approaches

correspond to the same Hilbert-Schmidt version of the BLR test that we employ. Below,

we summarize the homomorphism testing results derived from these two studies.

Theorem 6.1.1 (Tests from [GH17, MR15]). Let G be any finite group and f : G → 󳕾t be a

unitary matrix-valued function. Assume that the function f passes the BLR test with probability

δ. Then,

1. (Correlation with clipped representation [GH17]) : There is a representation, π : G → 󳕾t′

and two matrices, V ,U ∈ 󳕬t×t′, such that f correlates with the function, gπ 󳓬 Vπ(x)U∗ :

G → 󳕾t : 󰀍
f,gπ

󰀎
tr ≥ δ2

4 · t

Moreover, the representation has bounded dimension, δ2t ≤ t′ 󳓬 dim(π) ≤ 2t
δ2 .

2. (Fourier Mass on a low-dimensional irreducible representation [MR15]) : There exists an

irrep ρ ∈ 󰁥G such that dim(ρ) < 2t
δ2 and 󰀂󰁥f(ρ)󰀂2HS ≥ δ2

2 .
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Remark 6.1.2. Note that the representation, π, in part 1 of the theorem is not guaranteed

to be irreducible, but the second one is.

6.1.2 Our Results

The main contribution of this work is to give a derandomized BLR-like homomorphism

test in the low soundness regime for the general setup of functions from an arbitrary finite

group G → 󳕾t. Prior to this work, the only known derandomized test in the 1%-regime is

that of [BSVW03] for the case when G 󳓬 󳖃np and H 󳓬 󳖃p. Our key derandomization tool

is small–bias sets (Definition 1.3.10). We first review a few constructions.

Theorem 6.1.3 ([WX08, Thm 5.1]). For every finite groupG and any constant ε > 0, there exists a

deterministic poly(|G|)-time algorithm that outputs an ε-biased set S ⊆ G of size |S| ≤ O
󰀓
log |G|
ε2

󰀔
.

While this bound is tight over Abelian groups, we can do much better for other groups.

Particularly for all finite simple groups, we now have explicit constant-sized small-biased

sets due to a long line of work [KN06, Kas07, Lub11]. These can also be made near-optimal

using the amplification machinery from Chapter 4, Theorem 5.2.1.

Theorem 6.1.4 ([KN06, Kas07, Lub11], Theorem 5.2.1). For every non-abelian finite simple

group G and any ε > 0, there exists a deterministic poly(1/ε)-time algorithm that outputs an

ε-biased set S ⊆ G of size |S| ≤ O
󰀃
ε−(2+o(1))

󰀄
.

Result 1: Derandomized Homomorphism Testing We analyze the following deran-

domized variant of BLR. Here, the parameter γ allows for a relaxed version of this test

that makes the test robust to small noise, which can be useful as󳕾t is a continuous group.
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Derandomized BLRγ(G, S, f):

1. Sample x ∼ G,y ∼ S.

2. If 󰀂f(xy)−f(x)·f(y)󰀂2HS ≤ γt, output Pass. Else, output Fail.

Setting γ 󳓬 0 recovers the usual derandomized version of the BLR test used in previous

derandomizations of homomorphism tests [BSVW03, SW04].

Theorem 6.1.5 (Informal version of Theorem 6.4.4). Let G be any finite group and f : G → 󳕾t

be a unitary matrix-valued function. Let S ⊆ G be an ε-biased set. Assume that the function f

passes the derandomized BLR test with probability δ >
√
ε. Then,

1. (Correlation with clipped representation): There is a representation, π : G → 󳕾t′ and two

matrices, V ,U ∈ 󳕬t×t′, such that for gπ 󳓬 Vπ(x)U∗ : G → 󳕾t, f correlates with gπ,

󰀍
f,gπ

󰀎
tr ≥ δ2−ε

4 · t

Moreover, the representation has bounded dimension, (δ2 − ε)t ≤ t′ 󳓬 dim(π) ≤ 2t
δ2−ε .

2. (Fourier Mass on a low-dimensional irreducible representation): There exists an irrep ρ ∈ 󰁥G
such that dim(ρ) < 2t

δ2−ε and 󰀂󰁥f(ρ)󰀂2HS ≥ δ2−ε
2 .

Moreover, if one uses the γ-robust BLR test, the same conclusions hold with δ replaced by δ− (γ/2).

Using the small-bias set construction from Theorem 6.1.3, we get a test that uses

log |G| + log |S| 󳓬 log |G| + O(log log |G|) 󳓬 (1 + o(1)) log |G|-random bits. For special

families of groups like the class of finite simple groups, we can use Theorem 6.1.4 to further

reduce the randomness to log |G| +O(1), which is almost optimal.

Result 2: Derandomized BNP Lemma The “BNP lemma” is a very useful observa-

tion due to Babai, Nikolov, Pyber [BNP08], and Gowers [Gow08]. This lemma gives
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an improvement over Cauchy–Schwarz for quasirandom groups, i.e., groups with no small

non-trivial irreps, and has been used to analyze mixing in progressions [BHR22], product-

free sets [Gow08], and hardness of approximation [BKM22], to name a few. In its most

general form, it says that for functions to t × t-matrices, f,g : G → Mt(󳕬), we have,

󰀂f ∗ g󰀂2 󳓬 󳕮
s∼G

󰀅
󰀂(f ∗ g)(s)󰀂2HS

󰀆
≤ 1

D
󰀂f󰀂22 󰀂g󰀂

2
2 .

We show that such a bound holds even when the average is over a small-bias set S ⊆ G,

which could be of constant size for some groups!

Lemma 6.1.6 (Derandomized Matrix BNP). Let G be a group such that the dimension of the

smallest non-trivial irrep is D, and let S ⊆ G be an ε-biased set. Let f,g : G → Mt(󳕬) be

mean-zero functions. Then,

󳕮
s∼S

󰀅
󰀂(f ∗ g)(s)󰀂2HS

󰀆
≤

󰀓 1
D

+ ε
󰀔
󰀂f󰀂22 󰀂g󰀂

2
2

The usual BNP lemma can be recovered by setting S 󳓬 G, and thus, ε 󳓬 0.

6.1.3 Technical Overview

Our main conceptual contribution is to initiate the study of the non-abelian generalization

of two useful notions in the analysis of Boolean functions: (i) spectral norm of a function

and (ii) spectral positivity.

Spectral norm and its non-abelian analog The ℓ1-norm of the Fourier transform of a

function is known as its spectral norm. Spectral norm has emerged as an important quantity

for the analysis of Boolean functions, i.e., functions over 󳖃n2 . In particular, functions with

low spectral norm have a lot of structure [STV17]: they admit small decision trees, parity

decision trees, they are easily learnable, etc.

One of the conceptual contributions of this paper is studying the non-abelian analog
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of this norm from the perspective of pseudorandomness. A first generalization one can

think of would be a similar ℓ1 norm of the Fourier coefficients. However, it turns out that

the appropriate generalization of the spectral norm is the Fourier algebra norm. This was

suggested earlier by Sanders [San21], who used it to generalize the quantitative idempotent

theorem. This norm has multiple equivalent definitions, but our key idea is to use the

following harmonic analytic reformulation due to Sanders [San21] (attributed to [Eym64]),

󰀂f󰀂A 󳓬 min
(π,V)

󰀋
󰀂u󰀂 · 󰀂v󰀂

󲷲󲷲 f(x) 󳓬 〈u,π(x) v〉
󰀌

where (π,V) is a representation of G and u, v ∈ V . ²

It is well-known that any function, f, on an Abelian group is ε󰀂f̂󰀂1-fooled by any

ε-biased set. We show that this neatly generalizes to any finite group by replacing the

spectral norm with Fourier algebra norm, any function, f, on a finite group is ε󰀂f󰀂A-fooled

by any ε-biased set.

Spectral Positivity and its non-abelian analog A function over an Abelian group G,

f : G → 󳕬, is spectrally non-negative of f̂(χ) ≥ 0 for every character χ. This notion played

a key role in the recent breakthrough by Kelley and Meka [KM23] on 3-AP free sets.

This naturally generalizes to the finite group setting wherein a positive-definite functions

is a function f such that f̂(ρ) is positive semi-definite for every irreducible representation

ρ. The critical observation is that such functions have a small algebra norm, 󰀂f󰀂A 󳓬 f(1).

We use this to prove that small–bias sets can be used to approximate the U2-norm.

2. The Fourier inversion theorem gives one such an expression for f by using the regular representation;.
However, it might not be the one that minimizes the algebra norm; hence, one minimizes over such
expressions.
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Proof Overview

Denote f̃(x) 󳓬 f(x−1)∗, and recall the following two norms,

(U2-norm) 󰀂f󰀂U2 󳓬 󰀂f ∗ f̃󰀂2 󳓬 󳕮
x∼G

󰀅
󰀂(f ∗ f̃)(x)󰀂2HS

󰀆

(Algebra norm) 󰀂f󰀂A 󳓬 min
(π,V)

󰀋
󰀂u󰀂 · 󰀂v󰀂

󲷲󲷲 f(x) 󳓬 〈u,π(x) v〉
󰀌

We now give a quick summary of the key steps involved in the proof:

1. (Lemma 6.3.1) Small–bias sets fool functions with a small algebra norm.

2. (Lemma 6.5.1) Let f,g : G → 󳕾t be any functions. Then, the function, x 󰀁→ 󰀂(f ∗

g)(x)󰀂2HS has a small Fourier algebra norm.

3. The above two lemmas imply a degree-2 EML. This immediately yields our result

on the derandomized BNP lemma (Lemma 6.1.6). We expect that this degree-2 EML

will have uses beyond this work, and we explain this below.

4. A special case of the above EML implies that small bias sets approximate U2-norm

(Corollary 6.1.7). Thus, the derandomized test’s passing probability implies a large

U2-norm of the function. Combining this with the inverse theorem of Gowers-

Hatami [GH17] gives us the first part of Theorem 6.1.5.

5. The second part of Theorem 6.1.5 follows from the same large U2-norm consequence

implied by test passing. To achieve this, we adapt the proof strategy of the BNP

lemma [BNP08] to our setup, which relies on basic non-abelian harmonic analysis.

Degree-2 EML Our key technical contribution is a degree-2 variant of the celebrated

expander mixing lemma (EML). Recall that EML characterizes spectral expansion. When

applied to the Cayley graph Cay(G, S), we get that S is an ε-biased set if and only if the
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EML holds, 󲷲󲷲󲷲 󳕮
s∼S

[(f ∗ g)(s)] − 󳕮
s∼G

[(f ∗ g)(s)]
󲷲󲷲󲷲 ≤ ε󰀂f󰀂2 󰀂g󰀂2, (EML) .

We prove that such sets also satisfy a degree-2 variant of the above inequality,

󲷲󲷲󲷲 󳕮
s∼S

󰀅
󰀂(f ∗ g)(s)󰀂2

󰀆
− 󳕮

s∼G

󰀅
󰀂(f ∗ g)(s)󰀂2

󰀆 󲷲󲷲󲷲 ≤ ε󰀂f󰀂22 󰀂g󰀂22 , (Our degree-2 EML) .

Using it for the special case of where g(x) 󳓬 f̃(x) 󳓬 f(x−1)∗, we get that small bias sets

approximate U2-norm.

Corollary 6.1.7 (Small bias sets approximate U2-norm). For f : G → 󳕾t such that 󰀂f󰀂 󳓬 1,
󲷲󲷲󲷲 󳕮
s∼S

󰀅
󰀂(f ∗ f̃)(s)󰀂2

󰀆
− 󰀂f󰀂U2

󲷲󲷲󲷲 ≤ ε󰀂f󰀂42 .

Thus, the U2-norm of a function f can be ε-estimated by querying f ∗ f̃ on an ε-biased set S.

6.1.4 Related Work

High soundness regime Blum–Luby–Rubinfield [BLR90] analyzed linearity tests for

functions of the form f : 󳖃n2 → {±1}. This was extended to the setting f : G → H where

both are arbitrary finite groups, by Ben-Or, Coppersmith, Luby, and Rubinfeld [BOCLR07].

This result was derandomized by Shpilka and Wigderson [SW04]. Going beyond finite

groups, Farah [Far00], and later, Badora and Przebieracz [BP18], give homomorphism

tests for any amenable group G, and any group H, equipped with an invariant metric.

Low soundness regime Bellare, Coppersmith, Håstad, Kiwi, and Sudan [BCH+95] ana-

lyzed linearity tests for functions of the form f : 󳖃n2 → {±1} in this low-soundness regime.

This was extended to the setting, f : 󳖃np → 󳖃p, by Håstad and Wigderson [HW03]. This

result was derandomized using ε-biased sets by Ben-Sasson, Sudan, Vadhan, and Wigder-

son [BSVW03]. For the same setting, Kiwi [Kiw03] analyzed a variant of the BLR test that
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uses a lot more randomness but gives an improved correlation. Samorodnitsky [Sam07]

studied a completely different setup where H is large and not a subset of 󳕬. He showed

that if a function f : 󳖃n2 → 󳖃m2 passes the test with probability δ, then it has an exponen-

tially small agreement with a homomorphism. Improving the agreement to polynomial

in δ is equivalent to the polynomial Freiman–Rusza (PFR) conjecture which was finally

settled recently [San12, GGMT23]. The following table summarizes previous work.

Work Setting (f : G → H) Conclusion Randomness

High Soundness

[BLR90] G 󳓬 󳖃n
2 , H 󳓬 󳖃2 Hamming 2 log |G|

[BOCLR07] G,H any finite groups Hamming 2 log |G|
[SW04] G,H any finite groups Hamming (1 + o(1)) log |G|

Low Soundness

[BCH+95] G 󳓬 󳖃n
2 , H 󳓬 󳖃2 Hamming 2 log |G|

[Kiw03] G 󳓬 󳖃n
p , H 󳓬 󳖃p Hamming (2 + o(1)) log |G|

[BSVW03] G 󳓬 󳖃n
p , H 󳓬 󳖃p Hamming (1 + o(1)) log |G|

[Sam07, San12, GGMT23] G 󳓬 󳖃n
2 , H 󳓬 󳖃m

2 Hamming 2 log |G|
[BFL03] G finite abelian, H 󳓬 󳕾1 Correlation 2 log |G|
[MR15] G any finite group, H 󳓬 󳕾t Correlation 2 log |G|
[GH17] G any finite group, H 󳓬 󳕾t Hilbert-Schmidt 2 log |G|

Our Result G any finite group, H 󳓬 󳕾t Hilbert-Schmidt (1 + o(1)) log |G|
Our Result G any finite group, H 󳓬 󳕾t Correlation (1 + o(1)) log |G|

Table 6.1: Summary of prior works on homomorphism testing

6.2 Prelims: Matrix–valued functions and U2-norm

Denote by L2
t (G) 󳓬 {f : G → Mt(󳕬)}, the space of t × t matrix-valued functions equipped

with the trace expectation inner product,

〈f,g〉 󳓬 󳕮
x∼G

[〈f(x),g(x)〉tr] 󳓬 󳕮
x∼G

󰀅
Tr

󰀃
g(x)∗f(x)

󰀄 󰀆
(6.1)

The induced norm is 󰀂f󰀂2 󳓬 󳕮x∼G[󰀂f(x)󰀂2HS]. For a function f, we denote its adjoint by

f̃(x) :󳓬 f(x−1)∗. The operation of convolution generalizes as,
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(f ∗ g)(x) :󳓬 󳕮y∼G
󰀅
f(xy−1)g(y)

󰀆
󳓬 󳕮y∼G

󰀅
f̃(y)∗g(yx)

󰀆
.

Definition 6.2.1 (Matrix Fourier Coefficient). For any irrep ρ, we have 󰁥f(ρ) :󳓬 󳕮x
󰀅
f(x) ⊗

ρ(x)
󰀆
. We denote the coefficient of the trivial irrep as µ(f) :󳓬 󰁥f(ρtriv).

Fact 6.2.2. The following identities hold for the matrix Fourier transform,

1. (Parseval’s identity) 󰀂f󰀂2 󳓬 󳕮x
󰀅
󰀂f(x)󰀂2HS

󰀆
󳓬
󳕐

ρ∈󰁥G dρ󰀂󰁥f(ρ)󰀂2HS

2. (Convolution identity) 󰁧f ∗ g 󳓬 󰁥f ·󰁥g
3. (U2 norm) 󰀂f󰀂U2 󳓬 󰀂f̃ ∗ f󰀂2 󳓬

󳕐
ρ dρ

󲷳󲷳󰁥f(ρ)󰁥f(ρ)∗󲷳󲷳2HS 󳓬
󳕐

ρ dρ
󲷳󲷳󰁥f(ρ)∗󰁥f(ρ)󲷳󲷳2HS

Proof. These facts are simple extensions of the scalar-valued functions and were considered

in [BFL03, MR15, GH17]. Since the last one is perhaps atypical, we provide a quick proof.

󰀂f󰀂U2 :󳓬 󳕮
xy−1󳓬wz−1

󰀅
Tr

󰀃
f(x)f(y)∗f(z)f(w)∗

󰀄 󰀆

󳓬 󳕮
t󳓬xy−1󳓬wz−1

[〈f(x)f(y)∗, f(w)f(z)∗ 〉]

󳓬 󳕮
t󳓬xy−1󳓬wz−1

󰀅󰀍
f(x)f̃(y−1), f(w)f̃(z−1)

󰀎󰀆

󳓬 󳕮
t

󰀅󰀍
(f ∗ f̃)(t), (f ∗ f̃)(t)

󰀎󰀆
󳓬 󰀂f ∗ f̃󰀂2 .

The second equality follows from Parseval’s identity and convolution identity once one

observes that,

󰁥f(ρ) 󳓬 󳕮
x

󰀅
f(x−1)∗ ⊗ ρ(x)

󰀆
󳓬 󳕮

x

󰀅
f(x)∗ ⊗ ρ(x−1)

󰀆
󳓬 󳕮

x
[f(x)∗ ⊗ ρ(x)∗] 󳓬 f̂(ρ)∗ □

6.2.1 Fourier algebra norm and positive definite functions

Let f : G → 󳕬 be any function and let Tf be the convolution by f operator, Tf(g) 󳓬 f ∗ g.

More explicitly, Tf(x,y) 󳓬 1
|G| f(x

−1y) is a |G| × |G| matrix.
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Definition 6.2.3 (Fourier algebra norm). The algebra norm of f : G → 󳕬 has the following

equivalent definitions,

i. 󰀂f󰀂A 󳓬 sup
󰀋
〈f,g〉

󲷲󲷲 󰀂Tg󰀂op ≤ 1
󰀌
.

ii. 󰀂f󰀂A 󳓬 󰀂Tf󰀂tr 󳓬
󳕐

i σi(Tf) where {σi} are the singular values of Tf.

iii. 󰀂f󰀂A 󳓬 min(π,V)
󰀋
󰀂u󰀂 · 󰀂v󰀂

󲷲󲷲 f(x) 󳓬 〈u,π(x) v〉
󰀌

where (π,V) is a representation of G

and u, v ∈ V .

The equivalence of definitions (i) and (ii) can be found in [San11, Lem. 5.2] and also

in [HHH22, Prop 3.11]. The proof of equivalence between (i) and (iii) is present in [San21,

Lem. 2.2], attributed to Eymard [Eym64, Thèorém, Pg 218]. In particular, Sanders shows

that the minimum is indeed attained for some representation (π,V).

Abelian Case When the group is abelian, the algebra norm coincides with the spectral

norm, i.e., 󰀂f󰀂A 󳓬 󰀂 f̂ 󰀂1. This can be seen by observing that Tf is a diagonal matrix (in the

Fourier basis) with the Fourier coefficients on the diagonal. Therefore, the algebra norm

generalizes the spectral norm to the non-Abelian setting.

Definition 6.2.4 (Positive definite functions). LetG be a finite group. A function f : G → 󳕬

is said to be positive definite if the convolution operator, Tf, is positive semi-definite.

The following simple observation states that positive definite functions have a small

algebra norm. We will crucially use this later to bound the algebra norm of a function.

Observation 6.2.5. If a function f is positive-definite, then 󰀂f󰀂A 󳓬 f(1).

Proof. Since Tf is positive semi-definite, 󰀂f󰀂A 󳓬 󰀂Tf󰀂tr 󳓬 tr(Tf) 󳓬 f(1) as Tf(x,y) 󳓬 f(x−1y)
|G| .

□
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6.3 Small-bias sets “fool” small norm functions

In the Boolean setting, properties of low spectral norm function have been well-studied

[KM93, STV17]. Green and Sanders [GS08] showed that functions with low spectral norm

can be expressed as a±1 combination of characteristic functions of cosets. Sanders [San11]

generalized it to non-abelian groups with spectral norm replaced by the algebra norm.

This suggests that the algebra norm is indeed the suitable generalization of the spectral

norm, and one might investigate other properties of functions with low algebra/spectral

norm. This section makes another connection by showing that small-bias sets fool func-

tions with small algebra norms, again generalizing the Abelian case.

Boolean Cube Let f : 󳖃n2 → 󳕬, be any function and let S be an ε-biased set. Then,
󲷲󲷲󲷲 󳕮
h∼S

[f(h)] − 󳕮
h∼G

[f(h)]
󲷲󲷲󲷲 󳓬

󲷲󲷲󲷲󳕗
χ

f̂(χ)
󰀓
󳕮
h∼S

[χ(h)] − 󳕮
h∼G

[χ(h)]
󰀔󲷲󲷲󲷲

≤ max
χ

󲷲󲷲󲷲 󳕮
h∼S

[χ(h)] − 󳕮
h∼G

[χ(h)]
󲷲󲷲󲷲 · 󳕗

χ󲧰0

󲷲󲷲f̂(χ)󲷲󲷲

≤ ε · 󰀂f − µ(f)󰀂A .

Moreover, this is tight due to a result of [DETT10, Prop. 2.7], which says that any

function that is fooled by all ε-biased sets must be sandwiched by low spectral norm

functions.

General finite groups We now generalize the above result for finite groups. The key

here is to use the harmonic analytic definition of the spectral norm, which makes the proof

surprisingly simple.

Lemma 6.3.1. Let f : G → 󳕬, be a function and S ⊆ G be any ε-biased set . Then,
󲷲󲷲󲷲 󳕮
x∼S

[f(x)] − 󳕮
x∼G

[f(x)]
󲷲󲷲󲷲 ≤ ε · 󰀂f󰀂A .
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Proof. From Definition 6.2.3, we get that there is a representation, (π,V), representation

of G such that f(x) 󳓬 〈u,π(x) v〉 for some u, v ∈ V . Moreover, 󰀂u󰀂󰀂v󰀂 ≤ 󰀂f󰀂A. Using

Maschke’s theorem (Theorem 1.3.8), we have π 󳓬 ρ⊕ctriv ⊕i ρi where c denotes the multi-

plicity of the trivial representation and ρi are all non-trivial irreducible representations

(possibly with repetitions). Let Uπ be the unitary transformation that block-diagonalizes

π. Then, Uπv 󳓬 vtriv ⊕ vi and similarly Uπu 󳓬 utriv ⊕ ui. Thus, we have,

〈u,π(x) v〉 󳓬 〈Uπu,Uπ π(x) v〉 󳓬 〈Uπu, (Uππ(x)U∗
π)Uπv〉

󳓬 〈utriv ⊕i ui, vtriv ⊕i (ρivi)〉

󳓬 〈utriv, vtriv〉 +
󳕗
i

〈ui, ρi(x) vi〉

Now, 〈utriv, vtriv〉 is a constant and is the same for both terms. Therefore,

󳕮
x∼S

[f(x)] − 󳕮
x∼G

[f(x)] 󳓬

󳕗
i

󰁇
ui,

󰀓
󳕮
x∼S

[ρi(x)] − 󳕮
x∼G

[ρi(x)]
󰀔
vi

󰁈
󲷲󲷲󲷲 󳕮
x∼S

[f(x)] − 󳕮
x∼G

[f(x)]
󲷲󲷲󲷲 ≤

󳕗
i

󰀂ui󰀂2 ·
󲷳󲷳󲷳 󳕮
x∼S

[ρi(x)] − 󳕮
x∼G

[ρi(x)]
󲷳󲷳󲷳
op
󰀂vi󰀂2 (Cauchy–Schwarz)

≤ ε
󳕗
i

󰀂ui󰀂2󰀂vi󰀂2 (S is an ε-bias set)

≤ ε ·
󰁶󳕗

i

󰀂ui󰀂22
󰁶󳕗

i

󰀂vi󰀂22 (Cauchy–Schwarz)

󳓬 ε · 󰀂u − utriv󰀂2󰀂v − vtriv󰀂2 (Uπ is unitary) . □

Corollary 6.3.2 (PD functions are fooled). If f : G → 󳕬 is a positive-definite function, then

󰀂f󰀂A 󳓬 f(1) ≤ 󰀂f󰀂∞. Therefore, if 󰀂f󰀂∞ ≤ 1, then f is ε-fooled by every ε-biased set.

Proof. Since, f is positive definite, Tf is PSD and thus, 󰀂f󰀂A 󳓬 󰀂Tf󰀂tr 󳓬 Tr(Tf) 󳓬 f(1) ≤ 1. □

6.3.1 U2 norm and algebra norm

Let f : G → Mt(󳕬) be a function, then 󰀂f󰀂U2 󳓬 󳕮y∼G[ψ(y)] where,
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ψ(y) 󳓬
󲷳󲷳(f̃ ∗ f)(y)󲷳󲷳2HS 󳓬

󲷳󲷳 󳕮
x∼G

[f(x)∗f(xy)]
󲷳󲷳2
HS .

Therefore, if ψ has small algebra norm then, 󰀂f󰀂U2 can be approximated by averaging ψ

over an ε-biased set. We prove the algebra norm bound by proving that the function, ψ,

is a positive-definite function.

Lemma 6.3.3. For f : G → Mt(󳕬), the function ψ(y) 󳓬
󲷳󲷳(f̃ ∗ f)(y)󲷳󲷳2HS is positive-definite.

Proof. To prove that Tψ is a PSD matrix, we wish to show that for any {ca}a∈G ∈ 󳕬G,
󳕗

a,b∈G
cacbψ(a−1b) ≥ 0

The key observation is that, if we can write ψ(a−1b) 󳓬 󳕮x,y∼G[
󰀍
Nx,y(a),Nx,y(b)

󰀎
tr] for

some Nx,y, then ψ is positive-definite. We first show such a factorization of ψ(a−1b).

ψ(a−1b) 󳓬

󲷳󲷳󲷳 󳕮
x∼G

󰀅
f(x)∗f(xa−1b)

󰀆󲷳󲷳󲷳2
HS

󳓬

󲷳󲷳󲷳 󳕮
x∼G

[f(xa)∗f(xb)]
󲷳󲷳󲷳2
HS

󳓬

󰀟
󳕮

x∼G
[f(xa)∗f(xb)], 󳕮

y∼G
[f(ya)∗f(yb)]

󰀠
tr

󳓬 󳕮
x,y∼G

[〈f(xa)∗f(xb), f(ya)∗f(yb)〉tr]

󳓬 󳕮
x,y∼G

[〈f(ya)f(xa)∗, f(yb)f(xb)∗〉tr]

:󳓬 󳕮
x,y∼G

󰀅󰀍
Nx,y(a),Nx,y(b)

󰀎
tr
󰀆

The second last equality uses the cyclicity of trace. The result now follows as,
󳕗

a,b∈G
cacbψ(a−1b) 󳓬

󳕗
a,b∈G

cacb 󳕮
x,y∼G

󰀅󰀍
Nx,y(a),Nx,y(b)

󰀎
tr
󰀆

󳓬 󳕮
x,y∼G

󰁫󰁇󳕗
a∼G

caNx,y(a),
󳕗
b∼G

cbNx,y(b)
󰁈
tr

󰁬

󳓬 󳕮
x,y∼G

󰁫󲷳󲷳󲷳󳕗
a∼G

caNx,y(a)
󲷳󲷳󲷳2
HS

󰁬
≥ 0. □
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Remark 6.3.4. One can also deduce this by coupling Stinespring’s dilation theorem with

the observation in [DCOT18] that f̃ ∗ f is completely positive. This immediately yields that

ψ(y) 󳓬 〈VV∗,π(y)VV∗π(y)∗〉 󳓬 〈VV∗, ρ(y)VV∗〉 for some representation ρ. We will use this

idea to prove Lemma 6.5.1, a general version of the above lemma.

6.4 Derandomized Matrix Correlation Testing

In this section, we will focus on functions of the form f : G → 󳕾t. Let S ⊆ G be an ε-biased

set. We consider the following robust variant of the BLR test on group G:

BLRγ(G, S, f):

1. Sample x ∼ G,y ∼ S.

2. If 󰀂f(xy)−f(x)·f(y)󰀂2HS ≤ γt, output Pass. Else, output Fail.

If S 󳓬 G, i.e., in the full randomness regime, it can be easily shown that if a function

passes the test, it must have a large U2-norm. Our key technical claim (Claim 6.4.2) is

that if S is a small-biased set, then, essentially, the same conclusion can be drawn from

derandomized BLR test passing.

This lower bound on the U2-norm can then be plugged into the result of Gowers and

Hatami [GH17], who showed that if a matrix-valued function on a finite group has non-

trivial U2-norm, then it must be close to some genuine representation. More specifically,

Theorem 6.4.1 (Gowers–Hatami [GH17]). Let G be any finite group and let f : G → Mt(󳕬)

be a matrix-valued function such that 󰀂f(x)󰀂op ≤ 1 and 󰀂f󰀂U2 ≥ ct, for some c > 0. Then

there are t′ ∈ [ c
2−ct,

2−c
c t] and a function g(x) :󳓬 Vπ(x)U∗ where π is a t′ dimensional unitary

representation, U,V are t × t′ dimensional partial unitary matrices, such that:
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󳕮x∼G
󰁫󰀍
f(x),g(x)

󰀎
HS

󰁬
≥ c2/4 .

We first prove the central derandomization claim, which lets us move from the test

passing probability of the derandomized test, to a claim about the U2 norm over the entire

group.

Claim 6.4.2 (Derandomized Test also implies large U2-norm). Let γ, δ ≥ 0 and f : G → 󳕾t.

If f passes the BLR2γ(G, S, f) test with probability ≥ δ then,

󰀂f󰀂U2 ≥
󰀃
(δ − γ)2 − ε

󰀄
· t.

Proof. Let, ∆(x,y) :󳓬 󰀂f(x)f(y) − f(xy)󰀂2HS and δ′ 󳓬 δ − γ. We have,

󳕮x∼G,y∼S
󰀅
∆(x,y)

󰀆
󳓬 2t − 󳕮y∼S

󰁫 󰀍
f(y), f̃ ∗ f(y)

󰀎
tr +

󰀍
f̃ ∗ f(y), f(y)

󰀎
tr

󰁬
(6.2)

This follows directly by expanding ∆(x,y) and using the fact that 󰀂f󰀂2 󳓬 t. On the other

hand, from the test-passing guarantee we have,

󳕮
x∼G,y∼S

[∆(x,y)] ≤ Pr
x∼G,y∼S

[∆(x,y) > 2γt] · 2t + Pr
x∼G,y∼S

[∆(x,y) ≤ 2γt] · 2γt

≤ 2t(1 − δ) + 2γt

󳓬 2(1 − δ′)t . (6.3)

In the first inequality, we used the fact that maxx,y{∆(x,y)} ≤ 2t, and in the second

inequality, we used test passing probability to upper bound Prx∼G,y∼S[∆(x,y) > 2γt].

Combining Eq. (6.2) and Eq. (6.3), we get:

2δ′t ≤ 󳕮y∼S
󰁫 󰀍

f(y), f̃ ∗ f(y)
󰀎
tr +

󰀍
f̃ ∗ f(y), f(y)

󰀎
tr

󰁬

≤ 2 󳕮
y∼S

󰀅
󰀂f(y)󰀂HS ·

󲷳󲷳f̃ ∗ f(y)󲷳󲷳HS
󰀆

(Cauchy–Schwarz)

󳓬 2
√
t · 󳕮

y∼S

󰀅󲷳󲷳f̃ ∗ f(y)󲷳󲷳HS
󰀆

(Using: f is unitary-valued.)

≤ 2
√
t ·

󰀓
󳕮
y∼S

󰁫󲷳󲷳f̃ ∗ f(y)󲷳󲷳2HS

󰁬 󰀔 1
2 (Cauchy–Schwarz)

109



Now we define ψ(y) 󳓬
󲷳󲷳f̃ ∗ f(y)󲷳󲷳2HS. Observe that, 󰀂ψ󰀂∞ ≤ t and it is a positive-definite

function by Lemma 6.3.3. This will allow us to deduce that the U2-norm is large easily.

From the computation before, we get,

δ′2t ≤ 󳕮
y∼S

[ψ(y)]

≤ 󳕮
y∼G

[ψ(y)] + ε󰀂ψ󰀂A (By Lemma 6.3.1)

≤ 󳕮
y∼G

[ψ(y)] + εt (By Lemma 6.3.3 and Corollary 6.3.2)

󳓬 󳕮
y∼G

󰁫󲷳󲷳f̃ ∗ f(y)󲷳󲷳2HS

󰁬
+ εt

(δ′2 − ε) t ≤ 󰀂f󰀂U2 (By definition of U2-norm ) □

To prove our main result, we need one more component that roughly says that the

convolution of functions is mostly supported on low dimensional irreps. The proof is

almost identical to the proof of the BNP lemma by Babai, Nikolov, and Pyber [BNP08].

Claim 6.4.3. Let, f,g : G → Mt(󳕬) and let T :󳓬 {ρ ∈ 󰁥G : dρ ≥ D}, then the following holds:
󳕗
ρ∈T

dρ
󲷳󲷳󰁧f ∗ g󲷳󲷳2HS ≤ 1

D
󰀂f󰀂22 󰀂g󰀂22 .

In particular, if G is a D-quasirandom group, then
󲷳󲷳f ∗ g − µ(f ∗ g)

󲷳󲷳 ≤ 1√
D

󰀂f󰀂2 󰀂g󰀂2.

Proof. From the convolution identity (Fact 6.2.2), we have:
󳕗
ρ∈T

dρ
󲷳󲷳󰁧f ∗ g󲷳󲷳2HS 󳓬

󳕗
ρ∈T

dρ
󲷳󲷳󰁥f(ρ)󰁥g(ρ)󲷳󲷳2HS (By convolution identity)

≤
󳕗
ρ∈T

dρ
󲷳󲷳󰁥f(ρ)󲷳󲷳2HS

󲷳󲷳󰁥g(ρ)󲷳󲷳2HS (Norm submultiplicativity)

≤ 1
D

󳕗
ρ∈T

d2
ρ

󲷳󲷳󰁥f(ρ)󲷳󲷳2HS
󲷳󲷳󰁥g(ρ)󲷳󲷳2HS (Using dρ ≥ D for ρ ∈ T )

≤ 1
D

󳕗
ρ

dρ
󲷳󲷳󰁥f(ρ)󲷳󲷳2HS

󳕗
ρ

dρ
󲷳󲷳󰁥g(ρ)󲷳󲷳2HS
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󳓬
1
D
󰀂f󰀂22 󰀂g󰀂

2
2 (Parseval’s identity)

To see the final claim, apply the above to T :󳓬 {ρ ∈ 󰁥G : dρ ≥ D} 󳓬 {ρ 󲧰 triv} because the

group G is D-quasirandom. Using Parseval’s identity (Fact 6.2.2) we obtain,

󰀂f ∗ g − µ(f ∗ g)󰀂2 󳓬

󳕗
ρ󲧰triv

dρ
󲷳󲷳󰁧f ∗ g󲷳󲷳2HS ≤ 1

D
󰀂f󰀂22 󰀂g󰀂

2
2 . □

Theorem 6.4.4 (Deranomized Homomorphism Testing). Let G be any finite group and f :

G → 󳕾t be a unitary matrix-valued function. Let S ⊆ G be an ε-biased set. Assume that f passes

the BLR2γ(G, S, f) test with probability ≥ δ(γ) for any chosen 0 ≤ γ ≤ 1. Then for η 󳓬 (δ−γ)2−ε,

the following holds,

1. There exists t′ ∈ [ηt, 2
ηt] and a function g(x) :󳓬 Vπ(x)U∗ where π is a t′ dimensional

unitary representation, U,V are t × t′ dimensional partial unitary matrices, such that:

󳕮x
󰀍
f(x),g(x)

󰀎
HS ≥ η2

4
t

2. for any integer D > 1,
max

ρ∈󰁥G:dρ<D

󰀂󰁥f(ρ)󰀂2HS ≥ η − t

D

In particular, there exists an irrep ρ such that dρ < 2t
η such that 󰀂󰁥f(ρ)󰀂2HS ≥ η

2 .

Proof. From the test passing assumption and Claim 6.4.2, it follows that: 󰀂f󰀂U2 ≥ ηt. Now

applying, Theorem 6.4.1 gives us the first claim. For the second claim, our starting point

is the same:

ηt ≤ 󰀂f󰀂U2 󳓬 󰀂f̃ ∗ f󰀂2 󳓬

󳕗
ρ∈󰁥G

dρ
󲷳󲷳�̃�f ∗ f (ρ)󲷳󲷳2HS

Now we divide 󰁥G into low and high dimensional irreps by taking T :󳓬 {ρ ∈ 󰁥G : dρ ≥ D}.

We have,
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ηt ≤
󳕗
ρ∈󰁥G

dρ
󲷳󲷳�̃�f ∗ f(ρ)󲷳󲷳2HS 󳓬

󳕗
ρ∈󰁥G\T

dρ
󲷳󲷳�̃�f ∗ f (ρ)󲷳󲷳2HS +

󳕗
ρ∈T

dρ
󲷳󲷳�̃�f ∗ f (ρ)󲷳󲷳2HS

≤
󳕗

ρ∈󰁥G\T
dρ

󲷳󲷳�̃�f ∗ f (ρ)󲷳󲷳2HS +
󰀂f̃󰀂2󰀂f󰀂2

D
.

In the inequality step above, we used Claim 6.4.3. As f is unitary valued, 󰀂f󰀂2 󳓬 󰀂f̃󰀂2 󳓬 t.

It follows that:
󳕐

ρ∈󰁥G\T dρ
󲷳󲷳�̃�f ∗ f(ρ)󲷳󲷳2HS ≥ ηt − t2/D. Finally, we have,

ηt − t2/D ≤
󳕗

ρ∈󰁥G\T
dρ

󲷳󲷳�̃�f ∗ f (ρ)󲷳󲷳2HS

󳓬

󳕗
ρ∈󰁥G\T

dρ
󲷳󲷳󰁥f(ρ)∗󰁥f(ρ)󲷳󲷳2HS (Convolution identity, Fact 6.2.2)

≤
󳕗

ρ∈󰁥G\T
dρ󰀂󰁥f(ρ)󰀂4HS (Sub-Multiplicativity.)

≤ max
ρ∈󰁥G:dρ<D

󰀂󰁥f(ρ)󰀂2HS ·
󳕗
ρ

dρ󰀂󰁥f(ρ)󰀂2HS (As, dρ ≤ D holds for any ρ ∈ 󰁥G \ T )

󳓬 max
ρ∈󰁥G:dρ<D

󰀂󰁥f(ρ)󰀂2HS · 󰀂f󰀂2 (Parseval’s identity, Fact 6.2.2)

󳓬 t · max
ρ∈󰁥G:dρ<D

󰀂󰁥f(ρ)󰀂2HS (f is unitary, 󰀂f󰀂2 󳓬 t) . □

6.5 Derandomized Mixing

In this section, we prove a general “degree–2 mixing lemma” as explained in the introduc-

tion for the general case of matrix-valued functions. The assumption that the functions

are mean-zero is without loss of generality and only for brevity.

Lemma 6.1.6 (Derandomized Matrix BNP). Let G be a group such that the dimension of the

smallest non-trivial irrep is D, and let S ⊆ G be an ε-biased set. Let f,g : G → Mt(󳕬) be
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mean-zero functions. Then,

󳕮
s∼S

󰀅
󰀂(f ∗ g)(s)󰀂2HS

󰀆
≤

󰀓 1
D

+ ε
󰀔
󰀂f󰀂22 󰀂g󰀂

2
2

The usual BNP lemma can be recovered by setting S 󳓬 G, and thus, ε 󳓬 0.

To prove this derandomization, we first prove a more general version of Lemma 6.3.3,

where instead of ψ(y) 󳓬
󲷳󲷳(f̃ ∗ f)(y)󲷳󲷳2HS, we have ψ(y) 󳓬 󰀂(f ∗ g)(y)󰀂2HS. This is no longer

positive definite as earlier. Still, we can use elementary representation theory to explicitly

give a factorization of the form ψ(y) 󳓬 〈u,φ(y) v〉 and thereby compute the algebra norm.

The representation φ that will come up is defined as follows — let V ⊆ L2
t (G × G) be the

subspace V 󳓬 span
󰀋
F(x,y) 󳓬 f(y)f(x)∗ | f ∈ L2

t (G)
󰀌
. Note that V inherits the expectation

trace inner product, i.e., 〈F,H〉 󳓬 󳕮x,y∼G[〈F(x,y),H(x,y)〉tr]. Then, we can define the

following representation of G,

(φ(a) · F)(x,y) 󳓬 F(xa,ya) 󳓬 f(ya)f(xa)∗.

We are ready to prove the generalization of Lemma 6.3.3.

Lemma 6.5.1. Let f,h : G → Mt(󳕬) be matrix-valued functions, and defineψ(y) 󳓬 󰀂(h ∗ f) (y)󰀂2HS.

Then, 󰀂ψ󰀂A ≤ 󰀂f󰀂2󰀂h󰀂2. Moreover, if the functions are unitary-valued, 󰀂ψ󰀂A ≤ t.

Proof. Let F(x,y) 󳓬 f(y)f(x)∗ and similarly, H̃(x,y) 󳓬 h̃(y)h̃(x)∗. Now,

ψ(a) 󳓬

󲷳󲷳󲷳 󳕮
x∼G

󰀅
h(x−1)f(xa)

󰀆󲷳󲷳󲷳2

󳓬

󰀟
󳕮

x∼G

󰀅
h̃(x)∗f(xa)

󰀆
, 󳕮
y∼G

󰀅
h̃(y)∗f(ya)

󰀆󰀠
tr

󳓬 󳕮
x,y∼G

󰀅󰀍
h̃(x)∗f(xa), h̃(y)∗f(ya)

󰀎
tr
󰀆

󳓬 󳕮
x,y∼G

󰀅󰀍
h̃(y)h̃(x)∗, f(ya)f(xa)∗

󰀎
tr
󰀆

󳓬 󳕮
x,y∼G

󰁫󰁇󰁨H(x,y),φ(a) F(x,y)
󰁈
tr

󰁬
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󳓬

󰁇󰁨H,φ(a) F
󰁈
.

By the definition of algebra norm Definition 6.2.3, we have 󰀂ψ󰀂A ≤ 󰀂H󰀂 · 󰀂F󰀂. Now,

󰀂F󰀂2 󳓬 󳕮
x,y

󰁫
󰀂f(y)f(x)∗󰀂2HS

󰁬
≤ 󳕮

x,y

󰁫
󰀂f(y)󰀂2HS󰀂f(x)

∗󰀂2HS

󰁬
󳓬 󰀂f󰀂4.

The inequality here follows from sub-multiplicativity. Similarly, 󰀂󰁨H󰀂 󳓬 󰀂h󰀂2. This proves

the first claim. When the functions map to unitary matrices, 󰁨H(x,y), F(x,y) are unitary

and thus,
󲷳󲷳󰁨H(x,y)

󲷳󲷳2
HS 󳓬 󰀂F(x,y)󰀂2HS 󳓬 t for every x,y ∈ G. We can thus avoid using

sub-multiplicativity and directly obtain,

󰀂F󰀂2 󳓬 󳕮
x,y

󰁫
󰀂f(y)f(x)∗󰀂2HS

󰁬
󳓬 t 󳓬 󰀂󰁨H󰀂2. □

Remark 6.5.2. One can weaken the unitary assumption by requiring that f is “unitary on

average”, an assumption also used in [MR15]. This is because 󰀂F󰀂 󳓬 󰀂󳕮x[f(x)f(x)∗]󰀂HS.

Lemma 6.1.6 (Derandomized Matrix BNP). Let G be a group such that the dimension of the

smallest non-trivial irrep is D, and let S ⊆ G be an ε-biased set. Let f,g : G → Mt(󳕬) be

mean-zero functions. Then,

󳕮
s∼S

󰀅
󰀂(f ∗ g)(s)󰀂2HS

󰀆
≤

󰀓 1
D

+ ε
󰀔
󰀂f󰀂22 󰀂g󰀂

2
2

The usual BNP lemma can be recovered by setting S 󳓬 G, and thus, ε 󳓬 0.

Proof. From Lemma 6.5.1, we have that the function, ψ(s) :󳓬 󰀂(f ∗ g) (s)󰀂2HS has algebra

norm 󰀂f󰀂22 󰀂g󰀂22 and therefore from Lemma 6.3.1 we have that averaging over S is ε-close

to true average. Thus,

󳕮
s∼S

󰀅
󰀂(f ∗ g)(s)󰀂2HS

󰀆
≤ 󳕮

s∼G

󰀅
󰀂(f ∗ g)(s)󰀂2HS

󰀆
+ ε󰀂f󰀂22 󰀂g󰀂22 (Using Lemma 6.3.1)

≤ 1
D
󰀂f󰀂22 󰀂g󰀂22 + ε󰀂f󰀂22 󰀂g󰀂22 (Using Claim 6.4.3) □
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CHAPTER 7

CONCLUSION

This thesis has used iterative techniques—graph lifts and derandomized powering—to

build expander graphs with symmetries of various families of groups. We have also seen

how such graphs can be used to build quantum error correction codes and randomness-

efficient testing algorithms. Apart from natural questions regarding the quantitative

strengthening of our results, there are several exciting avenues for further exploration.

High-Dimensional Expanders The notion of expansion has been generalized to hyper-

graphs, and just like an expander is a well-connected graph, an high-dimensional expander

(HDX) is a well-connected sparse hypergraph. Hypergraphs have been well-studied, but

the concept of an HDX is a recent development, and much needs to be learned about these

objects. A different perspective is that HDXs are graphs with an additional inductive struc-

ture that allows for local-to-global theorems. For instance, an HDX is an expander if all its

“local subgraphs” are. Such a property is very useful, and HDXs have been instrumental

in proving mixing times of well-known Markov chains [ALGV24], solving constraint satis-

faction problems [AJT19], and in derandomized agreement testing [DDL24, BLM24]. How-

ever, the iterative techniques used to build graphs do not easily generalize to HDXs. There

have been some works on generalizing graph powering [KP21] and graph lifts [BYDM24] to

HDXs. Still, much needs to be known, and designing expander construction techniques

that preserve this simplicial structure is a very interesting direction.

Non-Abelian Symmetries For most families of groups, the best construction of Cayley

expanders we have is of logarithmic degree from Alon and Roichman [AR94] and its

derandomizations. A central open question is to determine which groups admit constant-

degree expanding Cayley graphs and give efficient constructions if they do. One important

115



family that admits these is non-abelian finite simple groups, and even constantly many

random generators yield an expander. However, the proof of this using the Bourgain–

Gamburd machinery [BG08] is quite involved [BGGT15], and one could hope for an

elementary proof using recent advances in random matrix theory [BBvH23]. A square

Cayley complex is the central object underlying the breakthrough constructions of quantum

LDPC codes and locally testable codes. The underlying graph is a product of Cayley graphs

with a pair of commuting actions over non-abelian groups. Dinur, Lin, and Vidick [DLV24]

obtained almost good quantum locally testable codes via a construction with a larger

number of commuting actions of Ablelian groups. Having such a construction via non-

Abelian groups might yield good quantum LTCs.

Study of functions on groups The study of boolean functions, i.e., f : 󳖃n2 → 󳕻, has had

applications in multiple areas like complexity theory, learning theory, etc (see [O’D14]).

It is fruitful, however, to go beyond Boolean functions and generalize the machinery of

boolean function analysis to matrix-valued functions over general groups, f : G → 󳕬n×n.

For instance, in Chapter 6, we generalized the notion of spectral norm and its connection to

ε-biased sets. A few interesting lines of inquiry based on recent applications are,

• Generalizing hypercontractive inequalities to non-abelian groups such as compact

groups and the symmetric group, has applications in quantum complexity [AGL23],

in extremal combinatorics [FKLM24], and potentially in many other settings.

• Abelian groups are poorly mixing, and thus, the question of mixing in groups is excit-

ing in the non-abelian world [BT14, Tao13]. Such mixing results are also studied in

additive combinatorics due to connections to the density of arithmetic progressions

and are also a crucial ingredient in recent results on optimal hardness of approxima-

bility [BK21].
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APPENDIX A

APPENDIX

A.1 Instantiating the s-wide Replacement Product

The goal of this section is to prove the following result that implies Theorem 1.2.2.

Theorem A.1.1 (Almost Ramanujan Expanders I). Let Cay(G, S) be λ0-expander with constant

λ0 ∈ (0, 1). For every function β(λ) > 0, and for any λ > 0, sufficiently small such that

32
β(λ) ≤

󰀕
log(1/λ)

4 log log(1/λ)

󰀖1/3
,

there exists a deterministic polynomial time algorithm to construct S′ such that Cay(G, S′) is a

λ-expander with degree |S′| 󳓬 Oλ0(|S|/λ2+β).

Furthermore, each element in S′ is the product of O(log(1/λ)) elements of S.

Overview

We will explicitly construct the graphs X and Y as needed for the s-wide product. Once

we obtain the graphs, we identify the vertices of X, i.e., VX with the initial generating set

S, or perhaps a slightly modified set S′, obtained by duplicating and adding identities.

The final set is obtained by multiplying elements along each (t − 1)-length walk on the

s-wide replacement product of X and Y. The way we choose parameters and objects for it

borrows heavily from Ta-Shma’s arguments in [TS17]. The analysis follows an analogous

structure of [JQST20] for binary codes, which, in turn, builds on the original analysis of

Ta-Shma [TS17]. We will also use the following result from that work,

Lemma A.1.2 (Based on Lemma 6 [TS17]). For every m ∈ 󳕷+ and d 󳓬 22k ≤ 2m, there exists

a fully explicit set A ⊆ 󳖃m2 such that the graph Cay(󳖃m2 ,A) is a (2m,d, λ 󳓬
m√
d
)-expander graph.
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The construction Given as input n :󳓬 |S|, λ and a slowly growing function β(λ), we

construct the graphs X, Y as described below with the parameters (s,d1,d2, λ1, λ2) which

are all functions of λ andβ(λ). These are summarized in a table below for reference¹. Recall

that a (n,d, λ)-graph has n vertices, is d-regular, and has the second largest singular value

of its normalized adjacency matrix at most λ.

• Outer Graph — The outer graph X will be an (n′,d1, λ1)-graph which is a Cayley

graph on SL2(p) constructed using Corollary 4.2.11 with (n, λ1) as input. By Exam-

ple 4.3.4, we obtain a locally invertible graph on n′ ≈ n. The condition on the size

is satisfied as n 󳓬 2|S|d5
2 ≥ d5

2 ≥ 2217 by the assumption that s ≥ 210. Moreover, the

degree is c
λ2∗4.1
1

≤ cd4.1
2

b8.2
2

≤ d5
2. We increase its degree to d5

2 by taking multiple copies of

the generating set, which does not change bias². Thus, we obtain a (n′,d1, λ1)-graph

where n′ 󳓬 n +O(n8/9).

• Inner Graph — The inner graph Y will be a (ds1,d2, λ2)-graph which is a Cayley

graph on 󳖃m2 and therefore by Lemma 4.3.9, it is compatible. For this, we use the

construction of Alon et al. [AGHP92] and the analysis of Ta-Shma (Lemma A.1.2).

We summarize the construction and the choice of parameters n′,d1,d2, λ1, λ2 and s,

which are chosen as follows for a fixed β(λ) here -

s is the smallest power of 2 such that 32
β ≤ s ≤

󰀓
log(1/λ)

4 log log(1/λ)

󰀔1/3

Every other parameter is a function of s.

Y : (n2,d2, λ2), n2 󳓬 d5s
2 , d2 󳓬 s4s, λ2 ≤ b2√

d2
, b2 󳓬 5s logd2

X : (n′,d1, λ1), n′ ≈ n 󳓬 O(|S|d5
2), d1 󳓬 d5

2, λ1 󳓬
λ2
2

10

t : smallest integer such that (λ2)(1−5α)(1−α)(t−1) ≤ λ, ; where α 󳓬 1/s

1. The choice of parameters is similar but not identical to Ta-Shma’s choice.

2. This is wasteful, but we do it to ensure that V(Y) 󳓬 ds
1 and that ds

1 is a power of 2.
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Note: We assume that s ≥ 210 since otherwise λ is a constant and we can use Theorem 4.2.2.

Now, we mention the central claim that we need from our choice of parameters.

Claim A.1.3. The selection of the parameters above implies the following bounds on t,

(i). t − 1 ≥ 2s2

(ii). (d2)(t−1) ≤ λ−2(1+10α),

Proof. Proof of (i) : Using d2 󳓬 s4s and the upper bound on s, we have

󰀕
1
λ2

󰀖(1−5α)(1−α)2s2
≤

󰀕
1
λ2

󰀖2s2
󳓬

󰀣
d2

b2
2

󰀤s2
≤ (d2)s

2
󳓬 s4s

3

󳓬 24s3 log2(s) ≤ 2log2(1/λ) 󳓬
1
λ

.

Hence, (λ2)(1−5α)(1−α)s/α ≥ λ and thus t − 1 must be at least 2s2. Also, observe that,

λ
(1−5α)(1−α)2(t−1)
2 󳓬 λ

(1−5α)(1−α)(t−2)
󰀓

(1−α)
1−1/(t−1)

󰀔
2 (A.1)

≥ λ
(1−5α)(1−α)(t−2)
2 (t − 1 ≥ s 󳓬 1/α) (A.2)

≥ λ (From the choice of minimal t) (A.3)

Since b2 󳓬 5s log2(d2) 󳓬 20s2 log2(s) ≤ s4 (recall that s 󳓬 1/α ≥ 210),

d1−2α
2 󳓬

d2

d2α
2

󳓬
d2
s8

≤ d2

b2
2

󳓬
1
λ2

.

We obtain claim (ii) by the following computation,

(d2)(t−1) ≤ λ2
−(t−1)
1−2α

≤ λ
−2

(1−2α)(1−5α)(1−α)2 (Using Eq. (A.3))

≤ λ−2(1+10α) . □
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Lemma A.1.4. The number of walks of length t − 1 on the s-wide replacement product of X and

Y is O(|S|/λ2+β).

Proof. Since each step of the walk has d2 options, the number of walks is

|V(X)| |V(Y)| · d(t−1)
2 󳓬 n′ · ds1 · d

(t−1)
2 󳓬 n′ · d(t−1)+5s

2

󳓬 Θ
󰀓
|S| · d(t−1)+5s+5

2

󰀔

󳓬 O
󰀓
|S| · d(1+5α)(t−1)

2

󰀔
.

Using Claim A.1.3 (ii), this implies a size of

O
󰀓
|S| · d(1+5α)(t−1)

2

󰀔
󳓬 O

󰀕
|S|

λ2(1+10α)(1+5α)

󰀖
󳓬 O

󰀕
|S|

λ2+32α

󰀖
󳓬 O

󰀕
|S|

λ2+β

󰀖
. □

Before we prove the main result, we need the following simple observation that will

be used to construct a modified (ε + o(1))-biased set starting from an ε-biased set, S. This

is needed because the graph obtained from Corollary 4.2.11 does not have size exactly |S|

but is only guaranteed to be at most (1 + o(1))|S|.

Lemma A.1.5. Let S be an ε-biased set of a group G. And let S′ be obtained by adding θ|S| many

identity elements. Then, S′ is an (ε + θ)-biased set.

Proof. Denote by e the identity element of G. Let ρ be any non-trivial irreducible repre-

sentation of a group G. From the computation we have,

󰀂󳕮s∈S′ρ(s)󰀂op 󳓬
1

1 + θ

󲷳󲷳󲷳󳕮s∈Sρ(s) + θ · 󳕮s∈S\S′ρ(1)
󲷳󲷳󲷳
op

≤ 󰀂󳕮s∈Sρ(s)󰀂op + θ (󰀂ρ(1)󰀂op 󳓬 1)

≤ ε + θ (S is ε- biased) . □

Theorem A.1.6 (Almost Ramanujan Expanders I). Let Cay(G, S) be λ0-expander with constant

λ0 ∈ (0, 1). For every function β(λ) > 0, and for any λ > 0, sufficiently small such that
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32
β(λ) ≤

󰀕
log(1/λ)

4 log log(1/λ)

󰀖1/3
,

there exists a deterministic polynomial time algorithm to construct S′ such that Cay(G, S′) is a

λ-expander with degree |S′| 󳓬 Oλ0(|S|/λ2+β). Furthermore, each element in S′ is the product of

O(log(1/λ)) elements of S.

Proof. We can assume that s ≥ 210 since otherwise λ is a constant, and we can just use

Theorem 4.2.2.

Initial Boost We first boost the expansion from λ0 to 1/d2 ≤ λ2
2/3. Using Theorem 4.2.2

(with its parameter β equal to 1), we can find a new set of generators, S1, such that

Cay(G, S1) is 1/d2-spectral expander and |S1 | 󳓬 O(|S|d5
2). Moreover, we also know that

each element in S1 is a multiple of at most log
󰀓
d5

2

󰀔
elements in S. We add multiple copies

of the entire set to make the size |S|d5
2.

The s-wide walk Obtain an (n′,d1, λ1)Cayley graphX from Corollary 4.2.11 as explained

before. We add n′−n 󳓬 O(n8/9) copies of the identity to S1 to obtain S2. By Lemma A.1.5

and the assumption that s ≥ 210, S2 is a λ2
2/3 + O(n−1/9) ≤ 2λ2

2/3-biased set. We denote

by S′ the final set of generators obtained by t steps of the s-wide replacement product of

X and Y. By definition, each element in S′ is a product of t elements in S2 which has the

same elements as S1. Thus, each element in S′ is a product of at most

O(t log(d2)) ≤ O((1 + 10α) log(1/λ)) (Using Claim A.1.3 [ii])

≤ O(log(1/λ)) (By the assumption that α ≤ 1/128)

elements of S. The only thing that remains is to prove expansion of Cay(G, S′). We pick any

irreducible representation ρ and apply Theorem 4.3.13 to the function ρ on S2 ↔ V(X). The

condition that 2λ(X) +
󲷳󲷳󳕮g∼S2[ρ(g)]

󲷳󲷳
op ≤ λ(Y)2 translates to λ1 ≤ λ2

2/6 which is satisfied
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by our choice of λ1. Thus, the final expansion is given by,
󲷳󲷳󲷳 󳕮
g∈S′

[ρ(g)]
󲷳󲷳󲷳
op
≔

󰀓
λs2 + s · λs−1

2 + s2 · λs−3
2

󰀔 ⌊(t−1)/s⌋

≤
󰀓
3s2λs−3

2

󰀔((t−1)/s)−1
󰀕
Using λ2 ≤ 20s2 log s

s2s
2 ≤ 1

3s2

󰀖

≤
󰀓
λs−4
2

󰀔(t−1−s)/s

≤ λ
(1−5/s)(1−s/(t−1))(t−1)
2

≤ λ
(1−5α)(1−α)(t−1)
2

󰀃
Using Claim A.1.3 [i]

󰀄
󳓬 λ

(1−5α)(1−α)(t−1)
2 ≤ λ, (From the choice of t) . □

A.2 Signed Non-backtracking Operator

A.2.1 Diagonalizing Non-backtracking Operator

Let ρ : G → GL(󳕬[G]) be the regular representation of the group G. More concretely,

given an element g ∈ G, the map ρ(g)eh 󳓬 e
h·g−1 where 󳕬[G] 󳓬 span{eg | g ∈ G}. As an

example, let G 󳓬 󳖃ℓ,󳕬[G] 󳓬 󳕬ℓ. Let P be the ℓ×ℓ permutation matrix that maps Pei 󳓬 ei+1

where i + 1 is taken modulo ℓ. Then, ρ(t) 󳓬 Pt for t ∈ 󳖃ℓ.

For a map ρ as above and an extended signing s , define a generalized non-backtracking

walk matrix in which for a non-zero entry indexed by (e1, e2), we replace 1 by the block

matrix ρ(s(e2)).

Lemma A.2.1. The non-backtracking walk matrix of the lifted graph is BX(s) 󳓬 BX(ρ).

Proof. In the lifted graph, the edges are of the form [(u, i − s(u, v)), (v, i)] 󳓬: [u, v, i] and

thus can be indexed by E′ × [l]. The non-backtracking walk matrix BX̂ would then have a

non zero entry from ([u, v, i], [x,y, j]) iff (v, i) 󳓬 (x, j − s(x,y)) and (y, j) 󲧰 (u, i − s(u, v)).

Assume that the first condition is met, i.e., x 󳓬 v and j 󳓬 i + s(x,y). If y 󳓬 u, then

i − s(u, v) 󳓬 i − s(y, x) 󳓬 i + s(x,y) 󳓬 j, and hence, the second condition cannot be met.
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This is just a longer way of saying that the lifts give a matching between u ×G and v ×G.

The implication of all this is that y has to be distinct from u, and thus, the pair of edges

(u, v), (v,y) has a non-zero entry in BX. Moreover, for every i and every pair of edges

(u, v), (v,y), we have a non-zero entry for (u, v, i), (v,y, i + s(v,y)) in BX(s). Thus, it can be

written as a block matrix with the entry in (u, v), (v,y) equal to ρ(s(v,y)). □

Since the base graphX and the signing swill be fixed throughout, we will drop the sub-

script to make reading less hurtful. We will need fact thatρ(h) 󳓬 F diag(χ1(h), · · · ,χl(h))F−1,

where χi are characters of G and F is a unitary. This follows from Theorem 1.3.8, but can

also be derived from the well-known fact that a collection of commuting matrices that are

diagonalizable are also simultaneously diagonalizable³ (see [Con, Thm. 5] for a proof).

Corollary A.2.2. The non-backtracking walk matrix, BX(s) 󳓬 Q diag(B(χ1), · · · ,B(χt))Q−1 and

thus Spec(BX(s)) 󳓬 ∪χ∈Ĝ Spec(B(χ)).

Proof. To ease notation we write BX(ρ) 󳓬
󳕐

Mu,v ⊗ ρ(s(u, v)) for some Mu,v. We have

ρ(s(u, v)) 󳓬 F diag(χ1(h), · · · ,χl(h))F−1 and thus,

BX(ρ) 󳓬 (I ⊗ F)
󳕗

Mu,v ⊗ diag(χ1(h), · · · ,χl(h))(I ⊗ F−1) .

Let |E| 󳓬 N and let T denote the permutation on Nt that maps T (i) :󳓬 bt + (a + 1) where

a,b are the unique non-negative integers such that 0 ≤ b < N i − 1 󳓬 aN + b. It can then

be seen that
󳕐

Mu,v ⊗ diag(χ1(h), · · · ,χt(h)) 󳓬 T diag
󰀃󳕐

Mu,v ⊗ χi(h)
󰀄
T−1. Notice that󳕐

Mu,v ⊗ χi(h) 󳓬 BX(χi) and thus putting it together we have that for Q 󳓬 (I⊗ F)T , BX(s) 󳓬

Q diag(B(χ1), · · · ,B(χt))Q−1. The statement on the spectrum follows immediately. □

A.2.2 A Simple Consequence of Ihara-Bass

We now slightly extend a claim in [MOP20] for general signings.

3. Using this, the argument is as follows. Since G is abelian, we have that {ρ(h)} are commuting, and
since they are invertible, they are diagonalizable. Thus, they simultaneously diagonalize.
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Claim A.2.3. Let A be the (signed) adjacency matrix of a d-regular graph. Suppose f is an

eigenvector of A satisfying

Af 󳓬

󰀕
β +

d − 1
β

󰀖
f.

Then g(u, v) ≔ (f(u)−βf(v)) (or in the signed case g(u, v) ≔ A(u, v)−1(f(u)−β ·A(u, v)f(v)))

is an eigenvector of the (signed) non-backtracking matrix B with eigenvalue β.

Proof. Let f and g be as in the statement of the claim. Suppose that A and B are not signed.

By a direct computation, we have,

(Bg)(u, v) 󳓬

󳕗
w∼v,w󲧰u

f(v) − β · f(w)

󳓬 (d − 1)f(v) −
󳕗

w∼v,w󲧰u
β · f(w)

󳓬 (d − 1)f(v) + β · f(u) − β
󳕗
w∼v

f(w)

󳓬 (d − 1)f(v) + β · f(u) − β(Af)(v)

󳓬 (d − 1)f(v) + β · f(u) − β

󰀕
β +

d − 1
β

󰀖
f(v)

󳓬 β(f(u) − β · f(v)) 󳓬 β · g(u, v).

Now suppose that A and B are signed. First note that g is well-defined since for every

entry g(u, v) the pair (u, v) is an orientation of an edge of the graph, so it has a signing

A(u, v) 󲧰 0. We have

(Bg)(u, v) 󳓬
󳕗

w∼v,w󲧰u
A(v,w)A(v,w)−1(f(v) − β · A(v,w)f(w))

󳓬 (d − 1)f(v) − β
󳕗

w∼v,w󲧰u
A(v,w)f(w)

󳓬 (d − 1)f(v) + β · A(v,u)f(u) − β
󳕗
w∼v

A(v,w)f(w)

134



󳓬 (d − 1)f(v) + β · A(v,u)f(u) − β(Af)(v)

󳓬 (d − 1)f(v) + β · A(v,u)f(u) − β

󰀕
β +

d − 1
β

󰀖
f(v)

󳓬 β · A(v,u)
󰀕
f(u) − β

1
A(v,u)f(v)

󰀖
,

󳓬 β · A(u, v)−1 (f(u) − β · A(u, v)f(v)) 󳓬 β · g(u, v),

where we used A(v,u) 󳓬 A(u, v)−1. □

Corollary A.2.4. Let A be the (signed) adjacency matrix of a d-regular graph. Let B be its

(signed) non-backtracking operator. For any λ > 2
√
d − 1, if ρ2(B) ≤ λ/2, then ρ2(A) ≤ λ.

Hence, λ(G) 󳓬 ρ(A) ≤ 2 max
󰁱√

d − 1, ρ2(B)
󰁲
.

Proof. We show via the contrapositive. Suppose that f is eigenvector of A with eigenvalue

α such that |α| > λ. By possibly multiplying A and B by a phase (i.e., eiθ), we can

assume α is a non-negative real number. By Claim A.2.3, we have that β satisfying

the equation β2 − αβ + (d − 1) 󳓬 0 is an eigenvalue of B. Considering the solution

β+ 󳓬 (α +

󰁳
α2 − 4(d − 1))/2 and thus, we have β+ ≥ α/2 > λ/2. □

A.3 A Precise Implementation of DFS

We now present the precise implementation of the depth-first search algorithm as we need

this implementation to satisfy the following:

Observation A.3.1. Let X be a connected graph. The DFS algorithm traversals each edge

of X exactly twice: first in a recursive step and subsequently in a backtrack step.
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Algorithm A.3.2 (DFS(X, v)).

Input connected graph X and starting vertex v

Output traversal T of G and step types σ

· Color all vertices of X with ’green’

· Traversal T 󳓬 ()

· Step types σ 󳓬 ”

· Parent π 󳓬 null

· DFSRec(X, T ,π,σ, v, e 󳓬 null)

· return T ,σ

Algorithm A.3.3 (DFSRec(G, T ,π,σ, v, e)).
Input graph G, traversal T , parent π, step types σ, vertex v and traversed edge e

Output Updated T (as side effect)

· T .append(e) if e 󲧰 null

· If v is ’green’:

· Color v with ’yellow’

· For each neighbor u of v not colored ’red’ and u 󲧰 π:

· σ.append(’R’) (recursive step)

· DFSRec(G, T ,π 󳓬 v,σ,u, e 󳓬 (v,u))

· Color v with ’red’

· σ.append(’B’) (backtrack step)
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