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1 Introduction[1]

Information theory is a branch of applied mathematics, electrical engineering,
and computer science involving the quantification of information .
Firstly, it provides a general way to deal with any information , be it language,
music, binary codes or pictures by introducing a measure of information , en-
tropy as the average number of bits(binary for our convenience) needed to store
one symbol in a message.
This abstraction of information through entropy allows us to deal with all kinds
of information mathematically and apply the same principles without worrying
about it’s type or form! It is remarkable to note that the concept of entropy
was introduced by Ludwig Boltzmann in 1896 as a measure of disorder in a
thermodynamic system , but serendipitously found it’s way to become a basic
concept in Information theory introduced by Shannon in 1948 .
Information theory was developed as a way to find fundamental limits on the
transfer , storage and compression of data and has found it’s way into many
applications including Data Compression and Channel Coding.

2 Basic definitions

2.1 Intuition behind ”surprise” or ”information”[2]

Suppose someone tells you that the sun will come up tomorrow.This probably
isn’t surprising. You already knew the sun will come up tomorrow, so they
didn’t’t really give you much information. Now suppose someone tells you that
aliens have just landed on earth and have picked you to be the spokesperson for
the human race. This is probably pretty surprising, and they’ve given you a lot
of information.The rarer something is, the more you’ve learned if you discover
that it happened.

2.2 Mathematical formulation of information[3]

Assume that an event E occurs with the probability p . Now , knowing that E
has occurred gives us

I(p) = log2(1/p) = − log2 p (1)
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bits of information. We use log base 2 as this is the number of binary bits and
it’s convenient to work in a binary framework. We will justify our definition of
information by 3 common sense observations about information.

1. I(p) ≥ 0 for all p ∈ (0, 1]
If we’ve learned that an event has occurred then certainly we have learned
something.The knowledge of an event happening can’t make us ”lose” or
”forget” information.

2. I(p) is a continuous function of p.
If we vary p slightly , then the information gained should also vary slightly.
An infinitesimally small change in p would not cause a sudden jump or
drop in the information gained.

3. I(pq) = I(p) + I(q) for all p, q ∈ (0, 1].
Suppose that E and F are independent events with Pr(E) = p, Pr(F ) = q
and Pr(EF ) = pq. If we already know that E has occurred and we are told
that F occurs, then the new information obtained is I(q) = I(pq)− I(p).

Now, using these observations let us construct our original definition of in-
formation.
Let p ∈ (0, 1].
Using property (3) , I(p2) = I(p) + I(p) = 2I(p) .
Similarly, I(pm) = mI(p) for all positive integers m.
Also, I(p) = I(p1/n . . . p1/n) = nI(p1/n), and hence I(p1/n) = (1/n)I(p) for all
integers n.
These observations imply that I(pm/n) = (m/n)I(p). By (2), we know that
the function is continuous and hence I(px) = xI(p) for all positive real num-
bers x. Therefore I(p) = I((1/2)− log2 p) = −I(1/2) log2 p = −C log2 p, where
C = I(1/2). By (1), C must be positive. For convenience, we take C = 1, so ,
I(p) = − log2 p

Shannon’s seminal idea in information theory is to associate an amount of
information, or entropy, with an information source.

2.3 Source

A Source S is a sequence of random variables X1, X2, ... with a common range
x1, x2, ..., xn. Such a sequence is also called discrete-time, discrete-valued stochas-
tic sequence , where the elements xi are called states or symbols.
The source S is seen as emitting the symbols x1, x2, ..., xn at regular intervals
of time.

If in a source the random variables Xi are independent and identically dis-
tributed, then source S is called discrete-memoryless source or zero-memory
source.If S is a discrete-memoryless source, it is written as(

x1 x2 ... xn
p1 p2 ... pn

)
where each pi is the probability of any random variable X to take value xi.
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Figure 1: The Entropy Function H(p)

2.4 Entropy of a Source S

Conside a discrete-memoryless source S =(
x1 ... xn
p1 ... pn

)
If S emits a symbol xi, then we say that we have received -log pi bits of

information. The average amount of information obtained per symbol is equal
to H(S).

H(S) = -

n∑
i=1

pilog pibits (2)

*log x means log2 x in this paper.
*limx→0 xlog x = 0

2.5 Convexity of Logarithm Function

Let p1, p2, ..., pn and q1, q2, ..., qn be non-negative real numbers such that
∑
pi

=
∑
qi = 1. Then

−
n∑
i=1

pilog pi ≤ −
n∑
i=1

pilog qi (3)

with equality iff pi = qi for all i.
Proof : There is no contribution to the summations from any pi = 0, hence

we discard these.
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n∑
i=1

pilog qi −
n∑
i=1

pilog pi =

n∑
i=1

pi(log qi − log pi)

=

n∑
i=1

pilog(
qi
pi

)

≤
n∑
i=1

pi(
qi
pi
− 1)

(using log x ≤ x− 1)

=

n∑
i=1

qi −
n∑
i=1

pi

= 1− 1

= 0

2.6 Two Extreme Type of Sources

2.6.1 Uniform Source

A source S is called a Uniform Source if the probability of each state or symbol
is equal, i.e. (

x1 x2 ... xn
1/n 1/n ... 1/n

)
The entropy of a uniform source = -

∑n
i=1 (1/n)log 1/n = log n.

2.6.2 Singular Source

A source S is called a Singular Source if the probability of one of the states or
symbols is equal 1 and rest all are 0, i.e.(

x1 ... xk ... xn
0 ... 1 ... 0

)
The entropy of a singular source = 0. Thus singular source provides no infor-
mation.

Theorem 2.1 : The entropy of a source with n states satisfies the following
inequality -

0 ≤ H(S) ≤ log n (4)

proof:

log x ≤ 0 iff x ∈ (0, 1).

log pi ≤ 0

pi log pi ≤ 0

−pi log pi ≥ 0

−
n∑
i=1

pilog pi ≥ 0.
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This proves the lower bound for H(S) . For upper bound for H(S):

−
n∑
i=1

pilog pi ≤ −
n∑
i=1

pilog(1/n)

= − log(1/n)

n∑
i=1

pi

= log n

Hence, the upper bound is log n.
Code : A code C for a source with n states contains a sequence w1, . . . ,

wn of binary strings, none the prefix of another.The source is x1 x2 ... xn
p1 p2 ... pn
w1 w2 ... wn


3 Kraft’s Inequality

Statement : A source with n states has a code with word lengths l1, l2, ....ln if

and only if
n∑
i=1

2−li ≤ 1

Proof : Let us arrange the n lengths according to their size in ascending or-
der.Without loss of generality ,we can assume that the lengths are in ascending
order.Let l be the maximum among all li’s. Consider a binary tree with 0’s and
1’s upto length ’l’, such that descendants of a node have it as their prefixes .

0

00

000 001

01

1

10 11

Consider a string of length li.Since it is not a prefix of any other word, it pre-
vents 2l−li strings of length l from being code words, this happens with every
li.Moreover, no child of wj is a child of wi .i.e., overlapping is not possible for
any two trees , where wi refers to the node of the code word with length li. For
each i,j, 2l−listrings(of i) and 2l−lj strings(of j) never overlap. Summing over

all code words,
n∑
i=1

2l−li ≤ 2l , i.e.,
n∑
i=1

2−li ≤ 1

Now for the converse ,we have to prove that,

If
n∑
i=1

2−li ≤ 1, then there is a prefix code with the lengths li,where 1 ≤ i ≤ n .
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Assume that the li’s are in ascending order . Take length l1 and mark any
one of the binary strings of length l1 of binary tree . As we have to form a
prefix code ,we cannot use any string which is having the marked node as its
root( no overlapping trees) .
Now mark l2 and mark any one of the binary strings of length l2 of binary tree
which is not a part of the tree formed by 1st marked node and continue the

same for l3, l4, ....., ln. As
n∑
i=1

2l−li ≤ 2l(since
n∑
i=1

2−li ≤ 1) , we will always find

a tree for each li such that no two trees overlap and the root string will be the
code word . Here , no node marked is a prefix of the other.

Thus, a prefix code can be formed if a set of lengths l1, l2, ....ln are given such

that
n∑
i=1

2−li ≤ 1 holds.

This proves the Kraft’s inequality.

Average length of code :

The average length of the code C is l̄ =
n∑
i=1

pi.li. This quantity is the average

number of code symbols per source symbol.

4 Shannon’s First Theorem :

The average length l̄ of a code is at least equal to the entropy H(S) of the
source. i.e.

l̄ ≥ H(S) (5)

Proof:

l̄ =
∑n
i=1 Pili

≥
∑n
i=1 Pili + log

(∑
2−li

)
[by kraft’s ineqality]

=
∑n
i=1 Pili +

∑
pi log

(∑
2−li

)
= -

∑
pi log

(
2−li∑

2−li

)
≥ -

∑
pi log pi [by convexity of logrithm function]

= H(S) [since
n∑
i=1

2−li∑
2−li

= 1]

4.1 Theorem 2

Given a source S, there always exists a code for S with average length l̄ such
that

l̄ < H(S) + 1 (6)
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proof:

Let source S be (
x1 x2 ... xn
p1 p2 ... pn

)
Define li to be integer such that − log pi ≤ li ≤ − log pi + 1. Then

n∑
i=1

2−li ≤
n∑
i=1

2log pi =

n∑
i=1

pi = 1.

Thus by Kraft’s inequality we can encode S by with strings of length l1, l2, ..., ln.
We have selected li ≤ − log pi + 1

li ≤ − log pi + 1

lipi ≤ (− log pi + 1)pi
n∑
i=1

lipi ≤
n∑
i=1

(− log pi + 1)pi

l̄ ≤ −
n∑
i=1

pi log pi +

n∑
i=1

pi

= H(S) + 1

Prepostion Given any two sources X and Y, we have

H(XY ) = H(X) +H(Y ). (7)

Proof

H(XY ) = −
m∑
i=1

n∑
i=1

piqj log piqj

= −
m∑
i=1

n∑
j=1

piqj log pi −
m∑
i=1

n∑
j=1

piqj log qj

= −
m∑
i=1

pi log pi

n∑
j=1

qj −
m∑
i=1

pi

n∑
j=1

qj log qj

= H(X) +H(Y )

Channels

Channel (X,Y ) consists of an input alphabet X = {x1, x2, ..., xm}, an output
alphabet Y = {y1, y2, ..., yn}, and conditional probabilities pij = p(yj | xi), for
1 ≤ i ≤ m, 1 ≤ j ≤ n. The conditional probability p(yj | xi) is the probability
that the output symbol yj is received when the input symbol xi is sent.
We can represent the channel by using individual probabilities for input and
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output alphabets or by using conditional probability matrix :
p11 ... p1n

. . .

. . .

. . .
pm1 ... pmn



Figure 2: A Communication Model
.

We have actually defined a discrete memoryless channel(DMC) above as any
instance of appearance of a symbol does not affects those that come later.

Given a channel (X,Y ) following entropies are defined:

1.Input Entropy

H(X) = −
m∑
i=1

pi log pi (8)

2.Output Entropy

H(Y ) = −
n∑
i=1

qi log qi (9)

3.Conditional Entropy or Equivocation

H(X | Y ) = −
m∑
i=1

n∑
i=1

p(xi, yj) log p(xi | yj) (10)

H(Y | X) = −
m∑
i=1

n∑
i=1

p(xi, yj) log p(yj | xi) (11)

4. Total Entropy

H(X,Y ) = −
m∑
i=1

n∑
i=1

p(xi, yj) log p(xi, yj) (12)

5.Mutual Information

I(X,Y ) = H(X)−H(X | Y ) (13)

The following figure indicates the relationships among the various entropies.
By analogy with a a priory entropy and a posteriori probability, H(X) and
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Figure 3: The entropies associated with a channel.

H(X | Y ) are called a priory entropy and a posteriori entropy, respectively.

Let’s work out the above definitions. H(X) and H(Y) are defined so by defini-
tion of entropy.H(X | Y ) can be thought of as the uncertainty in X on choosing
some Y and then taking sum over all possible values of Y.

H(X | Y = yj) = −
∑m
i=1 p(xi | yj) log p(xi | yj)

Taking sum over all possible values taken by Y, we get:

H(X | Y ) =

n∑
i=1

H(X | Y = yj)qj

= −
m∑
i=1

n∑
i=1

p(xi | yj)qj log p(xi | yj)

= −
m∑
i=1

n∑
i=1

p(xi, yj)qj log p(xi | yj)

Theorem Given any channel (X, Y) , we have

H(X,Y ) = H(Y ) +H(X | Y ) (14)

Proof.

H(X,Y ) = −
m∑
i=1

n∑
i=1

p(xi, yj) log p(xi, yj)

= −
m∑
i=1

n∑
i=1

p(xi, yj)[log qj + log p(xi | yj)]

= −
m∑
i=1

n∑
i=1

p(xi, yj)[log qj ]−
m∑
i=1

n∑
i=1

p(xi, yj) log p(xi | yj)]

= −
n∑
i=1

qi log qi +H(X | Y )

= H(Y ) +H(X | Y )
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Similarly we have the proof for

H(X,Y ) = H(X) +H(Y | X). (15)

Theorem Given any channel H(X, Y), we have

H(X,Y ) ≤ H(X) +H(Y )

Equality holds if and only if X and Y are independent.
Proof.

H(X,Y ) = −
m∑
i=1

n∑
i=1

p(xi, yj) log p(xi, yj)

≤ −
m∑
i=1

n∑
i=1

p(xi, yj) log p(xi, yj)

= −
m∑
i=1

n∑
i=1

p(xi, yj) log qj −
m∑
i=1

n∑
i=1

log qj

= H(X) +H(Y )

Corollary Given any channel (X, Y) , the following inequalities hold:

0 ≤ H(X | Y ) ≤ H(X);

0 ≤ H(Y | X) ≤ H(Y );

0 ≤ I(X,Y );

Binary Symmetric Channel (BSC) :- BSC is a channel in which both

input and output (X and Y) are of the form {0, 1}1 and accuracy of the
channel is independent of the input bit.
Let p be the probability that the bit is sent inaccurately over the channel.
Then the channel can be visualised as, 1

Lemma: Given a BSC between two sources X and Y, with probability of error
p

H(Y ) ≥ H(X)

Proof : Let x0 and x1 be the probabilities with which the input from X is 0
and 1 respectively and y0 and y1 be the probabilities with which the output
from Y is 0 and 1 respectively.

1Image Source : http://www.ni.com/white-paper/14917/en/
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Without loss of generality, assume that x0 ≤ 1
2 .

y0 =x0 ∗ (1− p) + x1 ∗ p
y1 =x0 ∗ (p) + x1 ∗ (1− p)
⇒x0 ≤ y0 ≤ x1(x0 ≤ x1)

⇒x0 ≤ y0 ≤ 1− x1

H(X) =− (x0 ∗ log(x0) + x1 ∗ log(x1))

H(X) =− (x0 ∗ log(x0) + (1− x0) ∗ log((1− x0))

H(Y ) =− (y0 ∗ log(y0) + y1 ∗ log(y1))

H(Y ) =− (y0 ∗ log(y0) + (1− y0) ∗ log((1− y0))

H(Y ) ≥ H(X)
Capacity - The capacity c of a channel is defined as the maximum mutual
information of the channel

c = max
pi

I(X.Y )

Theorem - The capacity c(p) is given by

c(p) = 1 + plog(p) + qlog(q) = 1−H(p) (16)
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Proof - From the above graph we can see that

H(Y ) ≤ 1.

I(X,Y ) = H(Y )−H(Y |X) ≤ 1−H(Y |X) = 1−H(p).

Therefore, c(p) = 1−H(p) = 1 + plog(p) + qlog(q).

The capacity gives a limit on correctly good the channel can transmit
information.
If the probabilty of error p is low, H(p) is low and capacity is high and anf if it
is close to 0.5 the capacity is around 0.

Rate r(C) - The rate of a code C(with all code words of length n) is the ratio
of the size of C to the length n.

r(C) =
log2(|C|)

n

It follows from the definition that r(C) ≤ 1.
The rate r captures essentially the density of the coding. A highly dense
coding is more susceptible to errors and this idea is formalised by the
Shannon’s Second Theorem.

5 Shannon’s Second Theorem

Consider a BSC(Binary Symmetric Channel) with probabilty of error p < 1
2 and

capacity c = 1−H(p).
Let R < c and ε > 0. For sufficiently large n,there exists a subset of M ≥ 2Rn

code words from the set of 2n possible inputs such that probability of error(per
word) is less than ε.
The code guaranteed by Shannon’s second theorem has rate

logM

n
≥ log 2Rn

n
= R (17)

Proof of theorem: Thus it is possible, by choosing n sufficiently large, to
reduce the maximum probability of error to an amount as low as desired while
at the same time maintaining the transmission rate near the channel capacity.
We establish some technical preliminaries. Choose R0 with R < R0 < c. Let
δ = ε/2. Choose ∆ so that R0 < 1−H(pδ) = c(pδ) < c,
The Hamming distance between two code words, named after Richard Ham-
ming (1915–1998), is the number of coordinates in which the words differ. The
Hamming distance of a code is the minimum Hamming distance between code
words. Assume that the channel is a BSCn with probability of error p, with n to
be determined. Suppose that α is transmitted and β is received. The expected
Hamming distance between α and β is np. Consider a sphere T of radius np∆
about β. Our decision procedure is as follows: if there is a unique word in T,
then we accept it. If there is no code word in T, or more than one code word,
then we concede an error.
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Lemma If n is a positive integer and 0 < x < 1/2, then

[nx]∑
i=1

(
n

k

)
< 2nH(x) (18)

The proof uses the probabilistic method, in which the existence of a desired
object (a good code) is established by showing that it exists with positive prob-
ability. The probability of error is

Pr(error) = Pr(α /∈ T ) + Pr(α ∈ T )Pr(α′ ∈ T : α′ 6= α)

≤ Pr(α /∈ T ) + Pr(α′ ∈ T : α′ 6= α)

≤ Pr(α /∈ T ) +
∑
α′6=α

Pr(α′ ∈ T )

It follows from the law of large numbers that, given ∆ and δ, there exists no
such that

Pr(
|X − np|

n
> ∆) < δ

for n ≥ no. Hence, the probability that the number of errors, X, exceeds the ex-
pected number of errors, np, by more than n∆ is less than δ. Therefore, we may
make the first term arbitrarily small (less https://preview.overleaf.com/public/nmtdnvpprfsw/images/1856a7f19e0ef9c93a2dda64d64d776a3e1df82e.jpegthan
δ).
Choose M with 2nR ≤ M ≤ 2nR′ . Suppose that M words are selected randomly
from the 2n possible words. There are 2nM possible codes, each selected with
probability 2−nM . Thus

P̄ r(error) < delta+ (M − 1)P̄ r(α′ ∈ T )

≤ δ +MP̄r(α′ ∈ T ),

where P̄ r denotes an average probability over all 2nM codes. Now Pr(α′ ∈ T ) =
|T |
2n , where |T | =

∑[np∆]
k=0

(
n
k

)
. Therefore, we have

P̄ r(error) < δ +M2−n2nH(p∆)

≤ δ + 2nR′−n+nH(p∆)

= δ + 2n(R′−1+H(p∆))

= δ + 2n(R′−c(p∆)).
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