
Proof of NP-hardness of Kronecker coefficients

Introduction

The following is an exposition of a recent paper [IMW17] which proves apart from the

NP-hardness of KRONECKER, the existence of superpolynomially many (pseudo) ”excep-

tional” Kronecker coefficients. These coefficients are relevant for the GCT program which is

the motivation for the renewed interest in this topic. Though the applications of the paper

are clearly to complexity theory and representation theory, the tools are purely combinato-

rial and this exposition thus assumes no background.

Preliminaries

Definition 1. Partition - A partition λ is defined to be a finite non-increasing sequence

of positive integers λ = (λ1, · · · , λl). We define height ht(λ) = l . Define the conjugate

λT := (λTi ) = number of boxes in ith column.

Example -

If λ = (3, 2) the diagram is and the conjugate i.e. λT = (3, 2, 1, 1) is

• We’ll do something very interesting. We’ll prove results about the Kronecker coeffi-

cient without even requiring to define it! Obviously we’ll need to borrow a (simple)

lemma but the rest would be self contained.

• The problem in working directly with the Kronecker coefficient, is that it doesn’t

have a combinatorial definition. In fact, finding one is a long standing open problem

in algebraic combinatorics posed by Murnaghan in 1930s.

• So how do we work with it if we don’t have a definition? A clever idea - sandwich

it between 2 other quantities that have both a combinatorial and a representation

theoretic interpretation.

• The interested reader may read this for the definition of kronecker coefficient and the

connections to GCT.

Given a (finite) point set P ⊂ {0, ..., r−1}3, let xP (i), be the number of points in P with the

x-coordinate i. We call xP = (xP (0), · · · , xP (r − 1)) the x-marginal of P. Similarly define

the y-marginal yP and the z-marginal zP . The triple (xP , yP , zP ) is called the marginals

of P.

Definition 2. Pyramid - A point set P as above is called a pyramid if it’s downward closed

as in - ∀(x, y, z) ∈ P and any point 0 ≤ x′ ≤ x, 0 ≤ y′ ≤ y, 0 ≤ z′ ≤ z (x′, y′, z′) ∈ P

Definition 3. tλµ,π - Number of P such that (xP , yP , zP ) = (λT , µT , πT )

Observation - For a marginal to be denoted by a partition, xP (0) ≥ xP (1) ≥ · · · ≥ xp(r−1)

and similarly for yP and zP . But if P is a pyramid, then this condition is automatically

satisfied.
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Definition 4. pλµ,π - Number of pyramid-P such that (xP , yP , zP ) = (λT , µT , πT )

Clearly then from the definitions, pλµ,π ≤ tλµ,π
Now we state without proving the lemma which will let us forget about the Kronecker

coefficient and work with t and p. This is proved by interpreting t, p in a representation

theory fashion.

Lemma 1. [IMW17] pλµ,π ≤ kλµ,π ≤ tλµ,π

NP-hardness

The aim is now to prove that the decision problem KRONECKER, which takes (λ, µ, π) in

unary as input and decides whether kλµ,π > 0, is NP-hard. The strategy is now very simple.

1. Find a sufficient condition on the triple (λ, µ, π) such that every point-set is a pyramid.

2. Show that such triples exist. Thus, kλµ,π = tλµ,π.

3. Apply the result of [BLG01] which says that checking the positivity of tλµ,π is NP-hard

even when (λ, µ, π) is of the above-type.

The sufficient condition

The key idea is to look at point sets that minimize a function f such that f is a function

only of the marginals and attains the minima only at pyramids.

The function we choose is the barycenter i.e.

b(P ) = b(xP , yP , zP ) =
∑

(x,y,z)∈P

x+ y + z =
∑
i

i (xP (i) + yP (i) + zP (i))

Define a r-simplex as Pr = {(x, y, z)|x + y + z ≤ r − 1}. For any n, define r(n) =

max{r | |Pr| =
(
r+2
3

)
≤ n}. It’s clear from definition of the r-simplex that for any point

set Q of size n, b(Q) ≥ b(Pr(n)) + r(n)(n − |Pr(n)|) := p(n) Equality holds if only if

Pr(n) ⊂ Q ⊂ Pr(n)+1

Definition 5 (Simplex-like). A triple of partitions (λ, µ, π) is called simplex-like if each of

them has atmost r + 1 columns and

b(λ, µ, π) =

r∑
i=0

iλTi +

r∑
i=0

iµTi +

r∑
i=0

iπTi = p(n)

Theorem 2. If (λ, µ, π) is simplex-like, then pλµ,π = tλµ,π.

Proof. Let Q be of size n and have marginals (λ, µ, π). b(Q) = b(λ, µ, π) = p(n). Thus,

from the above observation, Pr(n) ⊂ Q ⊂ Pr(n)+1 and in particular is a pyramid.
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The [BLG01] construction

The work of [BLG01] looks at at a subset of these simplex-like partition triples for which

they prove the NP-hardness result. Their specific construction is to take P2r and add

r + 1 points such that λT = φT + (d0, · · · , d2r) and µT = πT = φT + (1r+1, 0r) such that∑
k dk = r + 1 and

∑
k k(dk) = r(r + 1) .

Theorem 3. [BLG01] KRONECKER is NP-hard even when (λ, µ, π) is of this restricted

type as above.

Complexity of tλµ,π and relations with kλµ,π

We know certain that the Kronecker coefficient can be computed efficiently for certain

”natural” sub-classes of partition triples. This begs us to consider if positivity of t for the

same classes can also be computed efficiently.

Family kλµ,π [Known] tλµ,π [IMW17]

Littlewood Richardson coefficient* P [KT99, MNS12] Always > 0

Constant height P P

λ is a hook #P [Bla17] P

Rectangular Conj - [Mul07] P

* - A recent work has generalized this case to Littlewood-Richardson polynomials - [AA17].

The paper defines another quantity t̃λµ,π as the number of hypergraphs of type - (λ, µ, π)

with certain properties. It then shows that t̃λµ,π > 0 ⇐⇒ tλµ,π > 0. I find that approach

unnecessary, at least for the cases 1 and 3, and will thus prove it directly using t.

λ is a hook

Let λ = (D − k + 1, 1k−1) i.e. λT = (k, 1D−k). and µ, π be any partitions of D. Let

ht(µT ) = h1, ht(π
T ) = h2. We need to decide if there exists a point set P of type (λ, µ, π).

Say, you’re given a point set P with y, z labels such that ~yP = µ and ~zP = π.

To formalize this, we can identify P ∼= [D] by labelling the vertices but we define it generally

to avoid confusion. Define l : [D] → [r] × [r]. l is of type (µ, π) if ∀i
∑

j |l−1(i, j)| = µTi
and ∀j

∑
j |l−1(i, j)| = πTj We write such a label as lµ,π. What necessary and sufficient

conditions must lµ,π posses to be able to extend to a valid pointset?

Define an equivalence relation v1 ∼ v2 iff l(v1) = l(v2). Let |l| denote the number of

equivalence classes which is the same as the size of its image. Another way of representing

l is by giving the list equivalence classes (i, j) and then giving the number of vertices in

each class. Thus l can be represented as a h1 × h2 matrix (nij) where nij is the number of

vertices with label (i, j). Moreover, given any such matrix (of non-negative integers) such

that
∑

i,j nij = D,
∑

j nij = µTi ,
∑

i nij = πTj we have a labelling lµ,π where |l| is the number

of non-zero entries .

Lemma 4. tλµ,π > 0 ⇐⇒ ∃ lµ,π such that |l| ≥ k
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Proof. ⇒ Since λT = (k, 1D−k) we need k points with x-coordinate 0. But if |l| < k then

by pigeonhole principle, any set of k points consists of 2 such that l(v1) = l(v2) and thus

they have the same x,y,z coordinate.

⇐ Given such a l, take any k points with distinct l-values. Assign their x-coordinate to be

0. For the rest, assign them arbitrarily with x-coordinates 2, 3 · · ·D − k + 1.

Define Gµ,π which has V = {s, t, a1, · · · ah1 , b1, · · · , bh2}, E = Es ∪ Em ∪ Et where,

Es = {(s, ai)| i ∈ [h1], } c(s, ai) = µTi
Em = {(ai, bj)|i ∈ [h1], j ∈ [h2]} c(ai, bj) = 1

Et = {(bj , t)| j ∈ [h2]} c(bj , t) = πTi

A picture is worth a thousand word, so here goes.

s · · ·

a1

ah1

b1

· · ·

bh2

t

µT1

µTi

µTh1

1

1

πT1

πTj

πTh2

Theorem 5. Maxflow(Gµ,π) ≥ k ⇐⇒ ∃ lµ,π such that |l| ≥ k

Proof. Given a l, it’s easy to construct a flow. Just assign f(ai, bj) = 1 if (i, j) ∈ Im(l).

Assign the flows to the source/sink edges appropriately to satisfy the constraints. This gives

a valid flow as f(s, ai) =
∑

j I
(
|l−1(i, j)|

)
≤
∑

j |l−1(i, j)| = µTi where I(x) = 1 if x > 0,

else, 0. Similar relation holds for f(bj , t).

Given a maxflow f ( of size ≥ k), we get us a subset of our equvalence classes in l. Now to

get their sizes, draw a residual graph with no constraints on the internal edges i.e ,

s · · ·

a1

ah1

b1

· · ·

bh2

t

µT1 − f(s, a1)

µTi − f(s, ai)

µTh1 − f(s, ah1)

∞

∞

πT1 − f(b1, t)

πTj − f(bi, t)

πTh2 − f(bh2 , t)
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Solve the maxflow for this and say you get f ′. Now, it is easy to see(directly or by

Maxflow-mincut theorem) that the total flow, i.e
∑

i (f(s, ai) + f ′(s, ai)) = D . Define

nij = f(ai, bj) + f ′(ai, bj). Clearly,
∑

i,j nij = D and since |f | > k there are atleast k

(i, j) such that nij > 0. and this matrix (nij) thus defines a l with at least k equivalence

classes.

A bit of Rep theory and the GCT connection

Defining kλµ,π

• This section is meant to highlight the motivation for studying this problem and is not

critical for the rest of the exposition. So feel free to skip it.

• Given a group G and a vector space V, a representation of G on V is a group homo-

morphism ρ : G → GL(V ) i.e. if V ∼= kn for soem field k, then ρ(g) ∈ GLn(k) such

that ρ(gh) = ρ(g)ρ(h).

• W ⊂ V is called subrepresentation if ρ(g)W ⊂ W ∀g ∈ G. V is irreducible if its has

no non-trivial subrepresentations.

• A fundamental theorem of Maschke(for finite groups) and Weyl (for more general

reductive groups) is that every representation W of a finite (reductive, in general)

group G can be decomposed into irreducible representations i.e. W =
⊕

i aiVi

• If (V, ρ) and (W, δ) are representations of G then so is (V ⊗W,ρ⊗ δ) .

• For the symmetric group Sn its irreducible representations Vλ are indexed by partitions

of n, i.e. λ such that |λ| = n.

• Decomposing the tensor product of 2 of these, we get the definition of the kronecker

coefficient. Vµ ⊗ Vπ =
⊕

λ k
λ
µ,πVλ

GCT approach - A (extremely) high level view

• Valiant defined an algebraic computation model and therefore, an analog of boolean

complexity classes P, NP called VP and VNP.

• VPws ⊂ VP where ws stands for weakly skew. ( You may omit this slight technicality

for now) . Valiant conjectured that VPws 6= VNP

• P 6= NP =⇒ VP 6= VNP =⇒ VPws 6= VNP but the other direction is not yet known.

• These algebraic classes are defined in terms of families of polynomials. The deter-

minant in VPws−complete and the permanent is VNP−complete. So, roughly we are

saying that the permanent of a n× n matrix cannot be written as the determinant of

a p(n)× p(n) sized matrix for any polynomial p.
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• GCT aims to attack this problem using tools from algebraic geometry, representation

theory and geometric invariant theory. It associates with these complexity classes

certain representations of GLn say VPws ∼ Vd and VNP ∼ Vp

• GCT reformulation - [MS01] - VNP ⊆ VPws =⇒ Vp ⊆ Vd. The bar signifies a

(Zariski) closure but let’s not get into that.

• Breaking into irreps, say Vp =
⊕

λ aλVλ and Vd =
⊕

λ a
′
λVλ. An easy consequence of

the Schur’s lemma is that Vp ⊆ Vd =⇒ aλ ≤ a′λ ∀ λ

• Thus, finding a λ that violates the inequality would prove the conjecture.
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