Basics of Invariant theory

Invariant Theory and Computational Complexity

1 Introduction

This is a brief introduction to the central concepts in computational invariant theory and
how they are related to fundamental questions in computational complexity. In the past
few years, there has been a lot of activity in this area of computational invariant theory as
many connections to diverse areas like algebraic circuit complexity, optimization, quantum
information theory, polynomial identity testing (PIT) have been discovered. We will first
explain the mathematical setup and state the main results which are often used in most of
these works. We will then look at the connection to algebraic complexity theory and what
the conjectures say. We will proceed to then look at the current state of art, and survey
briefly the different approaches researchers have taken to attack this problem and its sub
cases. The aim of this exposition is to provide a bird’s eye view of the current literature and
simultaneously equip the reader with necessary concepts required to delve into the area.

2 Basic Terminology

This section’s a collection of the basic terms and results used in invariant theory. [DK] is an
excellent reference for this area. Readers familiar with this terminology may skip this.

2.1 Group Representation

For a group G, a G—representation is a tuple (V, p) where V is a vector space and p : G —
GL(V) is a group homomorphism. More concretely, if V' is n-dimensional, the map p assigns
to each group element g, a n x n invertible matrix p(g) such that p(gh) = p(g)p(h). This
can be generalised to other structures by replacing G by other algebraic structures like Lie
algebra, associative algebras etc.

2.2 Polynomial Algebra

Let V = spanp{e;} i.e V is a vector space over IF. IF[V] is defined to be the set of all
polynomial functions on the vector space V. One natural way to do this is by declaring a
basis of V' = {vy,--- ,v,}. The basis of the dual space, ( also called coordinate functions)
are {x1,---x,} where z;(v;) = d;;. Then, F[V] = Flxy,-- -, x,].

Example - We usually need the vectorspace of d-tuples of n x n matrices over IF i.e., V =
M (n,F)®? which has a natural basis, {efj | i,j € [n]k € [d]} which are the elementary
matrices. Their dual basically give us the (i, j)** co-ordinate and thus any polynomial in the
entries like ¢r(A), det(A) is an element of F[V]

However, this construction is not basis-free, so, let’s look at how to do it more abstractly.
The following S(V*) construction is also used frequently in literature, so it is a nice idea to
be familiar with.
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The goal is to create polynomials on vectors. But what does this even mean? There’s just
one way to multiply vectors - tensor products. But this is non-commutative! We force com-
mutativity i.e. quotient the tensor product space. Let’s see how to get degree 2 polynomials.

Say, V has a basis {e; | ¢ € [n]}. (I'm not cheating here but rather using a basis to ease
explanation!) Then, T?(V) = V@p V = spanp{e;®e; | i,j € [n]}. We want e;®@e; = ¢;®e;
so we quotient by all such relations, J = spanr(e; ® e; —e; ® e | 4,5 € [n]) to get,
S2(V) = T*(V)/J = spanp(e; ®e; | i < j € [n]). This is called the symmetric product.
However we need functions on V so we need to take S?(V*). Thus, any homogeneous de-
gree 2 polynomial in n variables can be written uniquely as p(z1, -+ ,zn) = ;¢ aijTiv; —
Di<jtij(e]) ® (ef) € S2(V*). We can do this construction for each d and define S(V*) =
@, S%(V*) which, by the above observation, gives F[V] := S(V*) = F[zy, - - - z,].

Note - As a shorthand, we write p(v) and not p(ey, - - - ,e,). For example, in V = M (n, )2,
we write p(Bi, Bs) = det(B; + Bs) but this is a polynomial in 2n? and not 2 variables.

2.3 Invariant Ring

For a G—representation (V,p), a polynomial p € F[V], is said to be invariant under the
action of G if p(v) = p(p(g)(v)) Yg € G Clearly, the set of all invariant polynomials
forms a ring denoted as F[V']“. Hilbert in a landmark result proved that if G is good
enough (reductive), this ring is finitely generated (as an IF- algebra), i.e there is a finite
set of polynomials {p; | i € I} such that any other invariant polynomial can be written
as a polynomial in these. Since the set is finite, define (F[V]%) = max deg(p;). Define

F[V]¢, = {f e F[V]9 | f(0) = 0} which is the set of polynomials with no constant term.

2.4 Nullcone and OCI

Definition 2.1 (Nullcone). N(V,G) = {v | f(v) = 0Vf e F[V]%,}.
Definition 2.2 (Orbit). G.v = {g-v | Vg € G}.

Definition 2.3 (Orbit Closure). G.v = {w | Vf € F[V], f(z) = OVx € Gv, = f(w) = 0}.

Example - If V = R and if S is any infinite set then S = IR as any polynomial that vanishes
on an infinite set is 0. Conversely, any finite set is already closed as we can construct a
polynomial (f(z) = [[,.q(z — s)) that vanishes exactly on those points.

Since, the vector spaces are finite dimensional, we can identify them with [ and thus can
also view them as an algebraic variety i.e as the zero-set of a bunch of polynomials. The
closure above is thus the closure under Zariski topology which just amounts to adding in all
the missing roots of the set of defining polynomials. This is a natural closure to take as the
nullcone is defined as a variety. However, we also have the usual Euclidean topology and
the Euclidean closure would be defined something like, G.v = {w | 3(¢;)ien, Z}lirgj gi-v = w}

An aside - Viewed thus, a V is also referred to as a G-variety. This is the approach taken
in geometric representation theory. Moreover, the groups we generally work with are matrix
groups like GL,, or SL,, are algebraic groups which means that they also have the structure
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of an algebraic variety.'In such cases, V is called an algebraic G-variety. Clearly, the above
definitions of nullcone and orbit closures arise from the geometric viewpoint.

Lemma 2.4. Euclidean closure is contained in the Zariski closure

Proof. If 3(¢g;)ien, lim g; - v = w. Then as every polynomial is a continuous function, we
can apply it inside Ztﬂéc limit. So for any invariant py, lim pg(g; - v) = pr(v) = pr(w) where
the first equality is due to the fact that p is an invariell;go polynomial. Thus, pi(v) =0 <
pr(w) = 0. Therefore, w € G.v O

The converse, in general, doesn’t hold but a famous result is that if F = C, then the closures
are same. Moreover there’s a foundational result called the Hilbert-Mumford criterion which
gives a partial “converse” for just the null-cone but for all algebraically closed fields.

Before we mention the theorem, let’s restate, the nullcone in terms of orbit closures.

Lemma 2.5. N (V,G) = {v| 0 € G.v}

Proof. Every f € F[V]9is fo + f/, f' € F[V]%,. If f(v) = 0 = fo = 0 because by

>0°

definition of N'(V,G), f'(v) = 0. But then, f = f’ and thus, f(0) =0 = 0¢€ G.v.

Now let 0 € G.v and for a contradiction assume f € F[V]Y, , f(v) # 0. Define the polyno-

mial h = (f — f(v)) f(g-v) = f(g-v) = f(v) = f(v) = f(v) = 0 but h(0) = —f(v) # 0, This
contradicts that 0 € G.v. Thus, v € N(V, G). O

The above lemma says that if v is in the nullcone, we can conclude that 0 is in the (Zariski)
orbit closure of v. The Hilbert-Mumford criterion says that in this case we can also say that
its in the Euclidean closure. This is a stronger statement as we saw above that this closure
is a smaller set. Moreover, the witness sequence comes from a 1-parameter subgroup.

Theorem 2.6 (Hilbert-Mumford). v e N(V,G) < %in% ¢(t)-v=0where ¢ : F* - Gisa
homomorphism. The image of ¢ is called the 1-parameter subgroup.
Now we have a natural computational question.

Definition 2.7 (Nullcone membership (NC)). Given a representation (G,V,p) and v € V,
decide if v € N (V, G). If not, try to give a witness f, f(v) # 0. This is called the separating
invariant.

We can generalize the problem as follows

Definition 2.8 (Orbit Closure Intersection (OCI)). Given a representation (G,V,p) and
v,we V, decide if G.v n G.w # ¢. If not, give a witness f, such that Vg, 0 = f(g.v) # f(w).

To check that this is indeed a generalization, note that for w = 0. G.0 = {0} and thus we
recover the nullcone membership question.

To see this, SL,, is defined as those matrices A where the polynomial det(A) — 1 = 0. To define GL,,, we
introduce a new formal variable Y and say GL,, = {A | det(A)Y — 1 = 0}, thus forcing det(A) # 0
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3 The GCT-5 generalisation

We know that the set of generators is finite. A naive but simple idea to solve OCI is to simply
compute the list of all generators and check for each if they evaluate to the same value on
the 2 input points. We don’t need generators but having separating invariants is enough for
our purposes. To make this formal, we define the following.

Definition 3.1. A set S — F[V] is called separating if for every pair v,w € V if 3f €
F[V]¢ f(v) # f(w) then 3g € S, g(v) # g(w). Define o(F[v]%) = mgnmag deg(g) where
ge

the min is over all separating S.

The set of generators is clearly separating and thus o(F[v]%) < B(F[v]¢) but a surprising re-
sult is that even if F[V]¢ is not finitely generated, then there may exist a finite separating S.
OCI is thus reduced to computing S and evaluating it at all points. This may not be feasible
as either | S| or o(TF[v]“) may be exponential. One of the key idea in [Mul16] is that instead
of asking for the exact set of generators (or separating invariants), we ask (all of) them to
be encoded into a succinct circuit along with additional variables that help us recover the
generators. Formally, we require a circuit C[V, G](x,v) = Zév fi(v)gj(x1,- - ,zp), such
that m, N are polynomially bounded, {f; | j € [N]} is separating and the g; € F[V]¢ are
linearly independent. The paper defines V' /G to be explicit if this C[V, G] can be computed
in polynomial time?. This clearly, is harder than OCI as orbit closures of v, w intersect iff
Clv, z] — C[w, ] is identically 0. The paper shows that computing C[V,G] € EXPSPACE
unconditionally and in £ X PH assuming the Generalized Riemann Hypothesis. The recent
work [GSS18] can be used to bring this down to PSPACE. Moreover, [Mul16] shows that
it is polynomial time computable for certain cases(discussed in next section) and conjec-
tures that it must be so for every reductive GG and a rational representation V.

An aside - We have already seen that V' is also an algebraic variety. The paper generalizes
the explicitness criteria (and the results) to an any variety W and asks for a circuit that
encodes an S. The separation condition is generalized by an integrality condition which
needs that F[WW] is integral over S. This is called the NNL? problem for the variety .

4 Current Status

In full generality, since we can build the circuit of all generators in PSPACE and then solve
OCI by a PIT test which can be done in PSPACE and thus the problem OCI € PSPACE.
[Mul16] also gives a polynomial time randomized Monte-Carlo algorithm to construct the
generators. But this is far from being in P that is conjectured. So why does this conjecture
make sense? One piece of evidence is that for a certain set of groups and representations
we indeed have polynomial time algorithms (these will be discussed later). But there is a
more fundamental reason.

%You might wonder what the input size is or even how the input is provided. This is a bit technical for our
purposes but the thing is that the representation V' of every reductive group G breaks as V' = @xma Vi

®NNL stands for Noether normalization lemma which says that for any W a random S of size > d (d is
the dimension) works with high probability but no smaller set does. The computational question then is to
derandomize this construction maybe by relaxing the size of S to be poly(d) instead of d + 1
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4.1 “Morally” in n

A simple way to get a certificate is by giving a separating polynomial f. The problem is that
the f might have large degree and/or large coefficients.

A certificate is intuitively harder but look back at the Hilbert-Mumford criterion and at
least for the nullcone membership problem (NC) we have a 1-parameter subgroup. This is
expected to be much more succinct as the images are usually (conjugates of) diagonal ma-
trices of the form diag(z*,--- , 2%). These a; can be shown to be small and thus amazingly
the certificate seems easier to obtain.

If V is over C or R then we have another amazing result that seems like an easier way of
getting a certificate.

Theorem 4.1 (Kempf-Ness). Let G be a complex reductive group and let (V,p) be a G-
representation where V' is a complex vector space with an inner product. Define u(v) =
%f” e Then v € V is not in the null-cone iff 30 #ye G- v, pu(y) =0

Such a y, along with a certificate for y being in G - v, is a certificate. Again, the issue is
bounds on its size. But, this seems like a more fruitful approach than bounding size of f
and this theorem is crucially used the analytic line of works.

5 Current Approaches

5.1 PIT

Given the links to circuits and PIT as outlined in GCT-5, a natural idea is to try to look at
groups and their actions such that solving the NNL for them reduces to PIT for a circuit class
which has already been derandomized.(Note that white-box derandomization suffices). For
this to happen, we must know explicitly what the generators of the invariant ring are and
whether these can be computed by a restricted circuit class. Utilizing this idea are the works
of [Mul16] and [FS13a]. The details are briefly given below.

1. G = GLy(or SL,), V. = M(n,F)" = {(B1,---,B;) | B; € M(n,F)} and the action
is conjugation M - (By,--- ,B,) = (MB;M~",--. M B,M~') The invariants are gen-
erated by trace of matrix powers and these invariants can naively be encoded as an
algebraic branching program (ABP). ([Mull6, FS13a]) showed that it can in fact be
encoded in a restricted circuit class called read-once oblivious algebraic branching pro-
gram (ROABP). PIT for this was (quasi)derandomized by [FS13b] and thus, OCI has
a polynomial time algorithm.

2. G is reductive and dim(G) is a constant and V' is any finite dimensional representation.
The generality is achieved by using a very general mechanism that holds for all reduc-
tive groups (kind of by definition). A short detour follows!
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5.1.1 Reynold’s Operator

Given a element v € V, there is a projection map to the space of invariant vectors
V& which in the case of finite groups is just averaging i.e R(v) = ‘—Cl;' 2gec 9 - v- For
compact groups, the summation can be generalized by integrating using a Haar mea-
sure. This operator exists in general for reductive groups and is called the Reynold’s
operator. This operator Rg : V — V¢ also induces a map R¢ : F[V] — F[V]%. It
thus maps polynomials to invariant polynomials. It has the property that is preserves
the degree. This means that if we have a degree bound, 3(F[V]“) < D, then we can
apply the operator to each monomial of degree < D and these would generate the
invariant ring IF[V']¢. Two issues remain which prohibit using these in general. One is
the degree bound and the second is actually computing these. There are general pro-
cedures to compute these and the most used one is called the Cayley’s omega process.
We won'’t discuss that and the interested reader is referred to [DK]

When the dim(G) is a constant the known degree bounds become polynomially bounded
and [Mul16] shows that the operator can be effectively computed and all of the in-
variants can be packed into a diagonal depth-3 circuit which was studied and (white-
box)derandomized by [RS05, AJS09, Sax08]. Thus, when dim(G) is a constant
OCT e P. [BGO™18] also uses this approach but not in the algebraic circuit model. It
analyses the case of SL,, and shows that applying the Reynold’s operator (judiciously)
gives coefficients that are not too large (i.e. exponentially large in n).

5.2 Analytic

A line of very interesting work originated with [GGOW15] giving analytic algorithms for
these nullcone and orbit closure intersection questions. The group here usually is SL,,;, x SLy,, - - - x
SL,, and it acts on V' = C" @ C™ ® ---C" The case of d = 2 which is equivalent to
M (ny x ng,IF)™ is called operator scaling as it has origins and application in operator the-
ory and the general one is called tensor scaling. For the case of operator scaling, [GGOW15]
gave a polynomial time algorithm for NC and [AGL* 18] extended it to OCI. For the general
tensor case, [BGO™ 18] gave a singly exponential algorithm. Other works [GGAOW17] give
connections to Brascamp-Lieb inequalities which is a vast generalization of the much-loved
AM-GM inequality. Read the beautifully written survey [GdO18] for details on these works.

The algorithms here are of the simple alternating minimization kind which have been used
for a long time but the main contribution of these works is to rigorously analyze these using
invariant theory tools namely the Hilbert-Mumford criterion and the Kempf-Ness criterion.
By their analytic nature, they work only for representations over C or R. The main idea is
as follows

* In every iteration, the input vector v is scaled by a simple alternating procedure.

* Associated with v is a progress function called the capacity which is some function
of its norm. Dually, we can associate another norm-based function (ds()) which is
related to the moment-map pu.

* We then calculate the decrease in the capacity in each iteration. And thus for any
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given e, we know the number of iterations I(e) for which the algorithm must be run
to decrease the capacity to e. This is something like a polynomial in log(1) or 1

* Clearly, if v € Ng then the norm goes to 0. If not try to find a lower bound, ¢y, on the
capacity.

* Run the scaling algorithm for I(ep) steps. If you can decrease the capacity to < ¢
then v € Ng, else it’s not. Dually, we can show that either ds(v) > 7 or it goes to 0.
Thus, if ds(v) < 79, then v ¢ Ng

* Therefore, these algorithms can be viewed as minimization optimization procedures
over the functions cap() or the ds(). These aren’t convex but are geodesically convex
and [AGL™"18] adapts convex optimisation procedures like gradient descent to tackle
this problem.

The scaling step is easy and thus always efficient. The 2 main bottlenecks for this are the
convergence rate I(e), which for the operator scaling case is poly(log(1)) but is poly()
for the generalized case of tensors, and the lower bound ¢, 79 which is usually (singly)
exponentially small.

5.3 Algebraic

While there is no single unifying tool used in these, they use a variety of interesting and sur-
prising algebraic techniques. Apart from the algorithmic papers there are also many works
giving lower/upper degree bounds for the generators of the invariant rings, i.e. S(F[V]%).
Let’s just list the algorithmic results and briefly discuss their contents.

1. For the left-right action of G = SL,, x SL,,,V = M(n,F)" ~ F" ® F" ® " which
is the matrix scaling one that we saw above but for a general field. [DM17, IQS15]
gave degree bounds . [IQS17, IQS18] gave a polynomial time algorithm for NC and
[DM18] used this as a subroutine to extend it to OCI. The most interesting con-
tribution of the work is a constructive regularity lemma which says the following.
Given a tuple of matrices My, --- , M, then for every d we define the matrix space
B? = {Zi‘=1 M;®B; | B; € M(d,T)}. Given A € B¢ with rank > rd for some r we can
compute in polynomial time A’ € B? of rank > (r + 1)d. Thus, the maximum rank ma-
trix is always a multiple of d. [DM16] gave an alternate proof of the non-constructive,
(i.e. that an A’ exists but not how to obtain it) version of this. [BJP17, BBJP19] have
used ideas from this work to give PTAS for the commutative and algebraic rank.

2. In [DM18], the authors also give an efficient reduction of OCI for the previous action
to that of G = GL, V = acting by conjugation i.e g - M = gMg~'. Thus, even this
action has a polytime algorithm for OCI. Earlier, for this particular action, [IKS10] had
given a polytime algorithm for checking membership in orbit (and not the closure).
This action as which we have already seen in PIT also appears in matrix completion
problems.

3. For the conjugation action of GL, (same as above) but on the restricted space of
symmetric or skew-symmetric matrices (instead of all matrices), [I[Q18] gave a poly-
nomial time-algorithm for checking if the orbits intersect, i.e., ?3g; (9Big™1); = (C;);
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where B;, C; are (skew-)symmetric. They also extend this to decide if given arbitrary
matrices (B;);, ?3g; (gB;g~!); is (skew-)symmetric. This is a very interesting work
as it generalises the idea of (skew)symmetry to a =x-algebra which are algebras with
an operation denoted * which is of order 2. It uses the fact that all such simple al-
gebras are classified (due to Weyl) and that in the simple case the problem can be
restricted for tuples of length 1 which can be easily solved. The algorithm also con-
tains many Lie-algebraic subroutines such as decomposition and radical computation
of Lie algebras to basically compute and simplify the «—algebra to the simple case.

One common advantage of these works is that they work on a large variety of fields, almost
all except small fields or certain characteristics, and output a witness i.e. a separating
invariant when the orbit closures don’t intersect.

6 Conclusion

The reader would(should!) be convinced by now that this area contains a ton of open prob-
lems with a wide array of interesting ideas and possible techniques. One one hand, there
are general questions like - can we improve the complexity from PSPACE to PH in gen-
eral?, show the existence of succinct or certificates?, and on the other, there are questions
related to analyzing specific representations. Can general ideas emerging in these works
like geodesic convex optimization, regularity-like lemmas, degree bounds, be used to solve
other problems? Let me just end now with an obvious disclaimer. While I've tried to not
omit any major results, guaranteeing comprehensiveness is hard (NP-hard?).

References

[AGL*18] Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Mendes de Oliveira, and Avi
Wigderson. Operator scaling via geodesically convex optimization, invariant
theory and polynomial identity testing. CoRR, abs/1804.01076, 2018. 5.2

[AJS09] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. Arithmetic
circuits and the hadamard product of polynomials. In IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2009, December 15-17, 2009, IIT Kanpur, India, pages 25-36, 2009.
5.1.1

[BBJP19] Vishwas Bhargava, Markus Blaser, Gorav Jindal, and Anurag Pandey. A de-
terministic PTAS for the algebraic rank of bounded degree polynomials. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
647-661, 2019. 1

[BGO"18] Peter Biirgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigder-
son. Alternating Minimization, Scaling Algorithms, and the Null-Cone Prob-
lem from Invariant Theory. In Anna R. Karlin, editor, 9th Innovations in

Invariant Theory 8



Basics of Invariant theory

[BJP17]

[DK]

[DM16]

[DM17]

[DM18]

[FS13a]

[FS13b]

[GdO18]

[GGAOW17]

[GGOW15]

[GSS18]

Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1-24:20. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 5.1.1, 5.2

Markus Blaser, Gorav Jindal, and Anurag Pandey. Greedy strikes again: A
deterministic PTAS for commutative rank of matrix spaces. In 32nd Compu-
tational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, pages
33:1-33:16, 2017. 1

Harm Derksen and Gregor Kemper. Computational Invariant Theory, volume
130 of Encyclopaedia of Mathematical Sciences. Springer-Verlag Berlin Heidel-
berg. 2, 5.1.1

Harm Derksen and Visu Makam. On non-commutative rank and tensor rank.
CoRR, abs/1606.06701, 2016. 1

Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-
invariants. Advances in Mathematics, 310:44 — 63, 2017. 1

Harm Derksen and Visu Makam. Algorithms for orbit closure separation for
invariants and semi-invariants of matrices. CoRR, abs/1801.02043, 2018. 1,
2

Michael A. Forbes and Amir Shpilka. Explicit noether normalization for simul-
taneous conjugation via polynomial identity testing. CoRR, abs/1303.0084,
2013. 5.1, 1

Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of
non-commutative and read-once oblivious algebraic branching programs. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
26-29 October; 2013, Berkeley, CA, USA, pages 243-252, 2013. 1

Ankit Garg and Rafael Mendes de Oliveira. Recent progress on scaling algo-
rithms and applications. CoRR, abs/1808.09669, 2018. 5.2

Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson.
Algorithmic and optimization aspects of brascamp-lieb inequalities, via oper-
ator scaling. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017,
pages 397-409, 2017. 5.2

Ankit Garg, Leonid Gurvits, Rafael Mendes De Oliveira, and Avi Wigderson. A
deterministic polynomial time algorithm for non-commutative rational iden-
tity testing. CoRR, abs/1511.03730, 2015. 5.2

Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic dependencies and
PSPACE algorithms in approximative complexity. In 33rd Computational Com-
plexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages
10:1-10:21, 2018. 3

Invariant Theory 9



Basics of Invariant theory

[IKS10]

[1Q18]

[1QS15]

[IQS17]

[1QS18]

[Mul16]

[RSO5]

[Sax08]

Gabor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polyno-
mial time algorithms for matrix completion problems. SIAM J. Comput.,
39(8):3736-3751, 2010. 2

Gébor Ivanyos and Youming Qiao. Algorithms based on *-algebras, and their
applications to isomorphism of polynomials with one secret, group isomor-
phism, and polynomial identity testing. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Or-
leans, LA, USA, January 7-10, 2018, pages 2357-2376, 2018. 3

Gdébor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. On generating the
ring of matrix semi-invariants. CoRR, abs/1508.01554, 2015. 1

Gébor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative
edmonds’ problem and matrix semi-invariants. Computational Complexity,
26(3):717-763, 2017. 1

Gdébor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-
commutative rank computation is in deterministic polynomial time. Compu-
tational Complexity, 27(4):561-593, 2018. 1

Ketan D. Mulmuley. Geometric complexity theory v: Efficient algorithms for
noether normalization. J. Amer. Math. Soc., June 2016. 3,4, 5.1, 1, 5.1.1

Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-
commutative models. computational complexity, 14(1):1-19, Apr 2005. 5.1.1

Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Au-
tomata, Languages and Programming, pages 60-71, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. 5.1.1

Invariant Theory 10



	Introduction
	 Basic Terminology 
	Group Representation
	Polynomial Algebra
	Invariant Ring
	Nullcone and OCI

	The GCT-5 generalisation
	Current Status
	``Morally" in  

	Current Approaches
	PIT
	Reynold's Operator

	Analytic
	Algebraic

	Conclusion

