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Introduction

The following is an exposition of the recent papers [IQS17] and [IQS18] which together give

an algebraic polynomial time algorithm to compute noncommutative rank of a symbolic

matrix over (sufficiently) large fields.

The Problem

The problem can be stated in multiple interesting ways and these can be read in [IQS17].

We will just look at one particular statement and work with it. Given a matrix T with

each entry a linear polynomial over F in formal variables px1, ¨ ¨ ¨xmq we want to compute

its rank over the field of rational functions i.e Fpx1, ¨ ¨ ¨ , xmq. If the variables commute this

is called the Edmond’ s problem and the decision version i.e. checking if rank is full or

not is the classic SDIT problem which is a subcase of PIT. There is a simple randomized

algorithm, which is plug in random values from the field i.e. - px1, ¨ ¨ ¨ , xmq Ñ pα1, ¨ ¨ ¨ , αmq

and compute rank over F. If the variables don’t commute, then formulating the problem

becomes trickier. The rank is now not over Fpx1, ¨ ¨ ¨ , xmq but over its non-commutative

analog called the skew field, denoted as F px1, ¨ ¨ ¨ , xm q
1. However, explicitly constructing

this skew field is not easy (see appendix for details) and we will use a definition of non-

commutative rank that will not require this.

What is non-commutative rank?

First, we reinterpret the rank of T “
řm

i“1 xiBi, Bi PMpn,Fq. Define B “ spanFpB1, ¨ ¨ ¨Bmq

and rkpBq as the maximum rank of a matrix in B i.e max
pa1,¨¨¨ ,amqPF

rkp
řm

i“1 aiBiq. Throughout

the article, B will be thus the input as above, unless explicitly mentioned otherwise.

Lemma 1. If F “ Ωpnq, rkFpXqpT q “ rkpBq

Proof. Let B “
ř

i aiBi P B be a matrix of largest rank. Any d ˆ d minor, A, of B

corresponds to a dˆ d minor A1 of T such that detpA1qpa1, ¨ ¨ ¨ amq “ detpAq. If detpA1q “ 0

then any evaluation is 0. Thus, rkpT q ě rkpBq. Since F is large enough, if detpA1q ‰ 0,

we can find a point pa1, ¨ ¨ ¨ , amq on which the determinant doesn’t vanish i.e detpAq ‰ 0.

Thus, rkpT q “ rkpBq.

This fails for small fields. For example, the polynomial xpx´1q is not identically 0 but over

F2 it vanishes on both points.

This, thus, gives us a definition of rank without using the function field which is what we

want. But directly using this will not work for noncommutative rank. Let’s look at the

following example (from Visu’s IAS talk),

A “

¨

˚

˝

0 1 x1

´1 0 x2

´x1 ´x2 0

˛

‹

‚

Ñ

¨

˚

˝

1 0 0

0 1 0

0 0 x1x2 ´ x2x1

˛

‹

‚

detpAq “ px1x2 ´ x2x1q and thus, rkFpXqpAq “ 2 but rkF pX q pAq “ 3

1Typesetting this was the hardest part in writing this! I ended up stealing TEXfrom [GGdOW15]
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Shrunk Subspaces

Definition 1. A subspace U Ď Fn is a c-shrunk subspace of B if DW Ď Fn such that

dimpW q ď dimpUq ´ c and @B P B, BpUq :“ tBu | u P Uu ĎW

This enables us to redefine noncommutative rank with no reference to the skew field.

Definition 2. ncrkpBq “ n´maxtc | D c-shrunk subspace of Bu

Cohn had given a construction of the free field and proved that the rkF pX q pT q “ min
sPZ`

s

such that T “ PQ where P,Q are homogeneous linear polynomials of sizes nˆ s and sˆn,

respectively. [FL04] then showed that this is equivalent to the above definition, i.e

Theorem 2 ( [FL04] + [Coh95] ). rkF pX q pT q “ ncrkpBq

This also lets us conclude the following lemma

Lemma 3. @B rkpBq ď ncrkpBq

Proof. If we have a c-shrunk subspace U . Then every B P B takes dimpBUq ď dimpUq ´ c.

Then rkpBq “ dimpBV q ď dimpBUq ` n´ dimpUq ď n´ c

Again for our above example, B1 “

¨

˚

˝

0 1 0

´1 0 0

0 0 0

˛

‹

‚

, B2 “

¨

˚

˝

0 0 1

0 0 0

´1 0 0

˛

‹

‚

andB3 “

¨

˚

˝

0 0 0

0 0 1

0 ´1 0

˛

‹

‚

Note that for any 0 ‰ v P F3, rkpB1v,B2v,B3vq ě 2. And thus, if U is a shrunk sub-

space then U – F3 but then the image is all of F3.

An aside - [FL04] showed that we also have an upper bound rkpBq ď ncrkpBq ď 2rkpBq
and recently [DM16] proved that this bound is tight by giving an explicit examples where

ncrkpBq is arbitrarily close to 2rkpBq.

First steps to an algorithm

A PSPACE algorithm

Given the above definition, the most natural way is to assume say that there is a c shrunk

subspace U of dimension d. Assume generic basis of size d. Then we can set up a system

of equations which have a solution iff there is a W of dimension d´ c. We can iterate over

each c ď d ď n and thus find the largest c.

A Randomized algorithm

We can try to get an inspiration from the randomized algorithm in the commutative case

but that fails as field elements commute but the variables don’t. Thus, we need to plug in
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elements from a noncommutative ring which should also have a multiplication defined with

F (in other words be a vectorspace over F). There’s a natural candidate - Matrices over F!

But does Schwarz-Zippel type lemma hold? If yes, upto what size matrices do we need to

plug in?

Definition 3. dth- blowup of B is defined as Btdu “ B bF Mpd,Fq ĂMpnd,Fq.

It is a matrix space too and clearly, rkpBtduq ě d ¨ rkpBq (just tensor the max rank matrix

in B with identity). But it can be more. Recall that T “
ř

i xiBi, if we plug in d ˆ d

matrices for the xi we are formally tensoring it with elements of Mpd,Fq and hence the

above definition. Now, clearly if for some set of matrices Ai we get a non-zero determinant

after plugging in, then the original T had full rank but for what sizes do we need to check

to conclude the converse? To reformulate this, let’s say we have m, dˆ d variable matrices

Yk “ py
k
ijq i, j P rds. We want to check if Dd “ detp

ř

i YibBiq is identically 0 or not. Let’s

assume we have a bound N such that if we have Dd “ 0 @d ď N , then we have ncrkpBq ă n.

We have thus “reduced” the decision problem of noncommutative rank to N instances of

SDIT and therefore have a natural polypn,Nq randomized algorithm. This, makes the result

of the paper even more surprising as derandomizing SDIT is considered hard (as it would

yield nontrivial circuit lower bounds) but this paper gives a deterministic algorithm for the

noncommutative case.(Infact, it computes the rank along with a certificate) But how do we

get N? This is where invariant theory kicks in. As we won’t be needing this, it is discussed

at the end.

A Broad Outline

Now that we have understood the problem, let’s look at what the main result is.

Theorem 4. Let F be such that |F| “ nΩp1q. Given B “ spanFpB1, ¨ ¨ ¨Bmq, there exists an

algorithm that computes ncrkpBq in nOp1q arithmetic operations. It also outputs a matrix

A P Btdu, d ď n ` 1 of rank rd (certifying ncrkpBq ě r) and a pn ´ rq-shrunk subspace U

(certifying ncrkpBq ď r)

We’ll first see what their algorithm broadly does and then get into the details and explain

why and how each step works. The main idea to derandomize the above algorithm by

carefully using the structure of the blowups. Instead of going sequentially for each d and we

rather start with some rank r matrix, A, (say B1) in B. With each “blowup” we construct

a matrix A1 of rank ą rd for some d and then round it up to pr ` 1qd. We stop when we

can no longer do this and at that point we output a certificate i.e a n´ r-shrunk subspace

which proves that the non-commutative rank is indeed r. Clearly, as rank is at most n we

have a polynomially many iterations. There are 3 crucial subroutines in this and we need

to ensure that each of these can be done in polynomial time -

1. Wong Sequences - To either output shrunk subspace or create A1

2. Regularity Lemma- To round up the rank

3. Blowup Control - To reduce the blowup back to ď n` 1
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A visual description follows.

Start with a

matrix A P Bd

rkpAq “ rd and

S Ď F |S| “ nΩp1q

Is d ď n ` 1 ? Blowup Control and reduce to d´ 1

Compute Wong

sequence W˚ of

A and check if

W˚
P ImpAq

We have that ncrkpBq “ r and

W˚´1
p0q is the n ´ r shrunk sub-

space

Use the Wong

Sequence history

to define new

A1, B1 P Bdd1

Find a λ P S

for which A2 “

A1 ` λB1 has

rank ą rdd1

A˚ “ A2

Use the regularity

lemma to roundup

rank i.e construct

A˚ of rank

pr ` 1qdd1

Now we have A˚ P Bdd1

of rank pr `

1qdd1

NO

YES

YES

NO

rkpA2q ě pr ` 1qdd1

rkpA2q ă pr ` 1qdd1

Figure 1: The overall algorithm

The Wong Sequence

Definition 4. Given A P Mpn,Fq, the second Wong sequence of pA,Bq is the sequence of

subspaces in Fn: W0 “ p0q, Wi “ BpA´1pWi´1qq.

Clearly if A P B, Wi ĂWi`1. As these are subspaces, the dimension increases by at least 1

(if not 0) and can be at most n. Thus, the sequence has size say ` steps where ` ď r ď n

where r “ rkpAq. W` is then called the limit of this sequence, denoted as W ˚.

We have the following result from [IKQS15],

Theorem 5. Let A P B of rank r and let W ˚ be the limit of the second Wong sequence of

pA,Bq. Then, ncrkpBq “ r if and only if W ˚ Ď impAq. If this is the case then A´1pW ˚q is a

pn´ rq-shrunk subspace of B. In the algebraic RAM model as well as over Q we can detect

whether W ˚ Ď impAq and if so compute a shrunk subspace in deterministic polynomial time.
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If we start with a random matrix, with high probability rkpAq “ crkpBq. This theorem says

that we can compute W ˚ and thus we have a certificate in case ncrkpBq “ crkpBq. However,

if this case doesn’t occur what do we do? We might naively try to augment i.e find a matrix

of higher rank and repeat but alas no such exist! (r “ rkpAq “ crkpBq). The solution -

blowup. As ncrkpBq ě r ` 1 ùñ ncrkpBtduq ě pr ` 1qd. We have rkpA b Idq “ rd and as

there is some slack now we have some hope of constructing a higher rank matrix but it can

still happen that crkpBtduq “ rd. However, this doesn’t occur if B is 2 dimensional i.e. its

generated by 2 matrices. In general, spaces where commutative rank equals noncommutative

rank are called compression spaces.

Theorem 6. ([AS78]) If |F| ą n and B “ spanFpA,Bq ĂMpn,Fq. Then crkpBq “ ncrkpBq

The following is my proof so the reader must be skeptical! A clean, geometric (and a much

more general) proof appears in rEH88s but that uses sheaves and vector bundles!!

Proof Sketch. Assume there is matrix C P B of highest rank say, k. We can assume it’s of

the form

C “

«

C 1 0

0 0

ff

where C 1 is k ˆ k. Complete the basis by picking a D i.e. B “ spanFpC,Dq. Take U “ Fn

and W “ ImpCq. If we show that ImpDq Ă W , then U is a shrunk subspace and then

ncrkpBq “ k “ crkpBq. Assume not, and let v P Fn such that Dv RW .

This means that for some l,m lth row of D times v is non-zero for k ă l ď n and choose m

such that Dpl,mq ‰ 0 Consider E “ pC ` µDq. The idea is that if any k` 1ˆ k` 1 minor

in E has a determinant that is not identically 0, we can find a µ that makes it non-zero

(as |F| ą n) and that would contradict the fact that max rank is k. However, consider the

minor, M , formed by first k rows and columns and the lth row and mth column. It is of the

form,

M “

«

C 1 ` µD1 µ ¨ w

µ ¨ u µ ¨ x

ff

But if that has identically 0 determinant so does,

M 1 “

«

C 1 ` µD1 µ ¨ w

u x

ff

Substituting µ “ 0 we get detpM 1q “ x.detpC 1q ‰ 0 as detpC 1q ‰ 0 as C is of rank k and

x “ Dpl,mq ‰ 0. Therefore, impDq ĂW and thus we are done.

Say the length of Wong sequence of pA,Bq is l ď r i.e. after ` steps, Wl moves out of

impAq. We can then find witness matrices Ci P B such that CipA
´1Wi´1q P Wi, that is

to say that ClA
´1Cl´1A

´1 ¨ ¨ ¨C1A
´1p0q Ć impAq we can embed the sequence C1 ¨ ¨ ¨ , Cl P

Mpn,Fq ’suitably’ into say C P Btlu. Embed A trivially i.e. A1 “ A b I and let B1 “
spanFpA

1, Cq Ă Btlu. The embedding is created such that the Wong sequence of pA1,B1q
escapes ImpAq ðñ the original one does. Since we have the first one escapes, so does

this and therefore ncrkpB1q ą rl.
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We already know that ncrkpBtluq ě ncrkpBq ¨ l ě pr ` 1ql ą rl. Why did we then create the

2-dimensional B1? Because B1 is 2 dimensional, from Theorem 6, we know that rkpB1q “
ncrkpB1q ą rd. Thus, if our set S is big enough i.e ą nl we will find a λ P S such that

A1 ` λC has higher rank.

The regularity lemma

An informal statement

Theorem 7. Given A P Btdu such that rd ă rkpAq ă pr ` 1qd for some r. There is a

polypn, dq algorithm that outputs A1 P Btdu such that rkpA1q ě pr ` 1qd

These can be unpacked as 2 claims. One, that there exists always such a matrix which is

equivalent to saying that rkpBtduq is always a multiple of d. This is non-constructive as it is

just an existential claim. [DM16] gave another proof of this part of the claim. The second,

which is needed for an algorithm, is that we can compute this A1 given A. We present the

proof below.

Note - There are many technical details in this section and the reader who just wishes to

get an overall picture of the proof may read the intuition and skip the details.

Intuition

Another definition of rank is rkpAq “ dimpImpAqq . Say we have a vector space V “

pv1, ¨ ¨ ¨ v2nq – R2n and A PMp2n,Rq. We can view V as a vector space over C by defining

scalar multiplication as follows,

i ¨ vi “ vi`1, i ¨ vi`1 “ ´vi @it1, 3, ¨ ¨ ¨ , 2n´ 1u

Thus, V – Cn. But it might be the case that a R2n subspace U Ă V may no longer be a

subspace over Cn. For example, U “ spanRpv1q is a R2n subspace but not a Cn subspace

as i ¨ v1 “ v2 R U . Moreover, it’s easy to see that if U is a Cn subspace of dimension k it

is a R2n subspace of dimension 2k. Thus, a way to prove that 2|rkpAq is by showing that

impAq “ tAv | v P R2nu is a Cn subspace. The natural plan now is this, try to embed

our ambient vector space Fnd into a suitable F1nd1 such that the image of our matrix space

Btdu ĂMpnd,Fq is a subspace in F1nd1 and moreover, the “degree” of F1 is d over F just like

for C it was 2.

Making the intuition rigorous

While the idea may sound simple there are many problems we face in making the above

work for general F and d. Let’s look at each and resolve them. Each step is progressively

more technical so feel free to stop when you are satiated!

Problem 1 - What is the a d-degree analog of C? - Division algebras

Not in general. Say we are working with R, then let’s try to see what properties do we

need from the degree d extension say D to be able to carry out the above plan. Clearly.
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it must be an ring i.e we need addition and multiplication. To make sure we get a vector

space over D and not just a module, we need that D has multiplicative inverse. To see

this if d P D doesn’t have an inverse, then we run into stuff like, v R spanDpdvq. Also, we

need to be able to define multiplication between R and D. Thus, D is an R algebra. Wait

then! You may say that well, isn’t D just a degree d field extension of R. For d “ 2, that

is certainly the case but we’ll see that doesn’t quite work. There are no more finite field

extensions of R !! Well, we don’t really need commutativity here. Sure, the proof becomes

harder but it goes through. This lack of constraint does help us as for d “ 4 we have

the famous quaternions which do the job. To summarize, D is a non-commutative field of

degree d over R or in general F. Another name for non-commutative fields is division algebra.

Problem 2 - Even division algebras don’t exist.

In what might seem like a cruel joke, here’s a famous theorem which might appear as a

blow to our plans.

Theorem 8 (Frobenius). If F is algebraically closed it has no dimension d ą 1 division al-

gebras. If F “ R (or real closed), then the only associative division algebras are of dimension

1, 2, 4.

So if we can’t construct a D over R what do we do. Well, go to a field extension of R and

then construct D. But didn’t I say there are no fields over R? I didn’t. There are no finite

extensions, we can always construct RpXq which is the field of all rational polynomials in 1

variable and then construct D over it. So now, R ãÑ RpX1, ¨ ¨ ¨Xnq ãÑ D where the first is

not finite but the second is. This is not quite it for a few technical reasons but we will get

back to this later.

Problem 3 - Dealing with non-commutativity

We are familiar with vector spaces over fields and the case with division algebras is pretty

much the same. However, there are certain places where non-commutativity messes with

our intuitions. The main one here is that scalar multiplication by D is not a D-linear

map. Let’s do this slowly. Say, D is a division algebra over F such that its index is d, i.e,

dimFpDq “ d2 (This is dimension of D as a vector space over F). It’s center K “ td P

D | d ¨ x “ x ¨ d @x P D u. In the above example with quaternions, F “ K “ R. But in

general, K would be a field extension over F. D is called central if F “ K. Define Dop to

be the opposite division algebra which has the same elements as D but the multiplication

is opposite, i.e., a ˚ b “ b ¨ a where ˚ is the multiplication in Dop. We use the following

theorem to make sense of the multiplication in D. See corollary 15.5 in [Lam] for the proof.

Theorem 9. If D is a central division algebra over F such that dimFpDq “ d2, then,

D bF D
op –Mpd2,Fq.

Now we can forget about division algebras and view them as matrices.

D ãÑ D bF D
op –Mpd2,Fq : xÑ xb 1 ÑMx

Similarly, y P Dop “ 1by ÑMy. The above isomorphism is such that Mx and My commute.
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The intuitive plan was to take the matrix A and look at its image and compute its dimension.

The weird thing due to non-commutativity is that even the image of multiplication by x P D

is not a D´subspace. Let x be represented by Mx P Mpd
2,Fq. impMxq “ tMxv | v P Fd2

u.

But, for an arbitrary z P D, z ¨Mxv “ MzMxv R impMxq. However, it is a subspace over

Dop as @ t P Dop, t ¨Mxv “ MtMxv “ MxpMtvq P impMxq. Now we are safe as Dop also

has dimFpD
opq “ d2. (In general D fl Dop but it holds if index is finite )

Moreover, we can write Fnd2
as n-tuples of Fd2

i.e. pFd2
qn and for any B PMpn,Fq , x P D ,

impB bF Mxq is a Dop subspace. Thus we have,

Lemma 10. If A P Mpn,Fq bF D ãÑ Mpnd2,Fq then imFpAq is a Dop subspace and thus,

rkFpAq is a multiple of d2

So, the broad plan is to now

1. Construct a suitable D over our F of dimFpDq “ d2

2. Convert A P Btdu to that of the form B bMx for some x P D

3. Convert B bF Mx back to an element A1 P Btdu

4. Take care that both steps 2 and 3 do not decrease rank.

Step 1 - Constructing the division algebra

There are quite a few details here both mathematical and algorithmic. I’ll just show what is

being constructed and claim that all this can be carried out efficiently i.e in time polypn, dq.

*Add good references and maybe an appendix*

F1F K :“ F1pXq L :“ F1p d
?
Xq

KpZq LpZq

KpY q :“ Kp d
?
Zq D :“ Lp d

?
Zq

Add d
?

1

Thus, D is of degree d2 over KpZq and it is a division algebra follows from Wedderburn’s

theorem that all finite dimensional associative algebras are – Mpn,Dq for some division

algebra D. Thus, D itself has to be of the form Mpd,KpZqq and clearly then, it’s dimension

is d2 over KpZq

The final output is a basis Γ Ă Mpd,F1rX,Y sq of Mpd,KpY qq such that spanKpZqpΓq “ D.

This basis has entries which are polynomials of degree at most d and can be computed in

polypdq time. This is what will allow us to actually use D.

Step 2,3 - Convert to B bF D and back

Any matrix over F can be thought of as a matrix over KpY q. Now, we have a have a basis

Γ of KpY q and we can thus rewrite the matrix in this basis. As Γ is also a KpZq basis for
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D we actually get an element of D. But for the form we need, we want the coefficients to

come from F and not KpY q. This requires a data reduction step which we prove now.

Theorem 11 ([DGIR96]). Let K be an extension field of F. Say we have a matrix space

with basis Bi PMpn,Fq. Given A1 “
ř

i aiBi ai P K i P rms of rank r and S Ă F such that

|S| ą r, we can construct A “
ř

i ciBi ci P S. This uses polypn, rq rank computations over

matrices
ř

i diBi di P S Y taiu

Proof. Let A1j “
ř

i‰j aiBi ` xjBj . As A1 has rank r, there exists a r ˆ r minor with

non-zero determinant. This is now a degree r polynomial in xj . Thus, it has at most r

roots in S. Say cj P S is not and substitute xj Ñ cj . Now, rkpA1q “ rkpA1jq. Repeat for all

j. The algorithm then, is to compute rkpA1jq A
1
j “ aiBi ` cBj for all j P rms c P S. The

number of rank computations needed is thus mpr ` 1q

Note - There are subtleties in performing computations over the extension field F1. In fact,

we can’t even construct it explicitly. To, get around this we construct a R “ F1‘k i.e. R

is k copies of F1. Now, as R is no longer a field, computing rank over F1 becomes slighly

trickier. See Section 4.4 in [IQS17] for these details.

Let now see the overall picture with yet another diagram (Yes, I love diagrams!).

Btdu “ B bF Mpd,Fq B bKpY q D

B bF D

œ

B bKpY qMpd,Fq

Write in Γ basis

Data reduction

Write in standard basis

Data reduction

Writing all this down more explicitly, we have,

A “
ř

iPrms,jPrd2s

αijBi b Ej A “
ř

iPrms,jPrd2s

λijBi b Cj , λij P FpX,Y q

A1 “
ř

iPrms,jPrd2s

µijBi b Cj , µij P FA1 “
ř

iPrms,jPrd2s

βijBi b Ej , βij P FpX,Y q

A2 “
ř

iPrms,jPrd2s

δijBi b Ej , δij P F

Write in Γ basis

Data reduction

Write in standard basis

Data reduction

For all this to work, we have the following chain of dependencies,

Lemma 12. rd ă rkFpAq “ rkKpY qpAq ď rkKpY qpA
1q “

rkKpZqpA
1q

d “ pr ` 1q ¨ d “ rkFpA
2q

Proof. 1. This is part of the input condition

Invariant Theory Tushant Mittal



Nullcone membership for LR action of SLn

2. Clearly, rkFpAq ě rkKpY qpAq as a dependency
ř

i aiCi ai P F where Ci P Fnd are the

column vectors, is also a dependency over KpY q. For the other direction, say we have
ř

i aiCi ai P KpY q. We can clear denominators by multiplying by their product. Now

the ai P F1rX,Z, d
?
Zs are of the form p0px, zq ` ¨ ¨ ¨ pd´1px, zqy

d. We can now isolate

any non-zero monomial in x, y, z and by requiring it’s coefficient to be zero get a
ř

i biCi bi P F. Note that this works as the elements of Ci P F

3. This holds due to the the data reduction lemma.

4. As D is a division algebra of dimension d2 over KpZq, by lemma 10 we have that

rkKpZq is a multiple of d2 and thus rkKpY q is a multiple of d .

5. Again follows from the data reduction lemma.

Blowup Control

This is the part that was introduced in [IQS18] and is a key ingredient that make the

algorithm efficient i.e. polymonial time. To see this, say, we did not have this step. Assume

we started with A P B of rank r. Now in each iteration we increase rank by 1 and the blowup

by a multiplicative factor of r` 1 (or r` 2). Thus, if ncrkpBq “ n, then the iteration would

have run for n´ r steps and the final blowup would be by about pr` 1q ¨ ¨ ¨ pn` 1q “ pn`1q!
r! .

This is problematic as our subroutines take time polypn, dq and we need d to be polynomially

bounded by n.

A polynomial bound on d was first shown by [DM17] but they gave a nonconstructive bound

which was constructivized in [IQS18]. We will not discuss this and the interested reader

may consult the original text. The paper though gives another simpler method which we

will use.

Lemma 13. Let A P Btdu be of rank dn , d ą n` 1. Then we can compute in deterministic

polypd, nq time A1 P Btd´1u of rank pd´ 1qn

Proof. Let A2 be any pd ´ 1qnpd ´ 1qn submatrix of A. As there are n rows and columns

removed from A. Then, rkpA2q ě rkpAq ´ 2n “ pd ´ 2qn “ pd ´ 2qpn ´ 1q ` d ´ 2 ą

pd´ 2qpn´ 1q ` n´ 1 “ pd´ 2qpn´ 1q Using regularity lemma we can round up the rank

to obtain A1 P Btd´1u of rank pd´ 1qn

At any stage the blowup occurs from d to dd1 ď dn, Thus, we might need to repeat this

step at most n times in each iteration. This is a polynomial increase but it ensures that

each step occurs in polypnq time.
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[DGIR96] Willem De Graaf, Gábor Ivanyos, and Lajos Rónyai. Computing cartan sub-

algebras of lie algebras. Applicable Algebra in Engineering, Communication

and Computing, 7(5):339–349, Sep 1996.

[DM16] Harm Derksen and Visu Makam. On non-commutative rank and tensor rank.

CoRR, abs/1606.06701, 2016.

[DM17] Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-

invariants. Advances in Mathematics, 310:44 – 63, 2017.

[EH88] David Eisenbud and Joe Harris. Vector spaces of matrices of low rank. Ad-

vances in Mathematics, 70(2):135 – 155, 1988.

[FL04] Marc Fortin and Alain Lascoux. Commutative/noncommutative rank of linear

matrices and subspaces of matrices of low rank. 2004.

[GdO18] Ankit Garg and Rafael Mendes de Oliveira. Recent progress on scaling algo-

rithms and applications. CoRR, abs/1808.09669, 2018.

[GGdOW15] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigder-

son. A deterministic polynomial time algorithm for non-commutative rational

identity testing. CoRR, abs/1511.03730, 2015.
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[IQS17] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative

edmonds’ problem and matrix semi-invariants. Computational Complexity,

26(3):717–763, 2017.
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Appendix

Skew Field Shenanigans

This is tricky to construct due to the noncommutativity. Let’s review how do we construct

it in the commutative case. We start with the ring of polynomials Frx1, ¨ ¨ ¨ , xns and then

invert all non-zero elements by what is called localization. Formally, Fpxq “ tpp, qq | p, q P
Frxs, q ‰ 0u with an equivalence relation pp, qq „ pf, gq ðñ pg “ fq. p{q then denotes the

equivalence class of pp, qq. Addition is formally defined as p{q ` f{g “ ppg ` fqq{qg. and

multiplication is p{q ¨ f{g “ ppfq{pqgq

Now, one can see the problems if variables don’t commute. 1{x ` 1{y “ px ` yq{xy but

1{y` 1{x “ px` yq{pyxq which are not equal anymore! To remedy this we require the ring

R to satisfy the either the left or right Ore condition. The (right) Ore condition says that

@a, b P R Dab, ba P Rzt0u aab “ bba. Note that in the commutative world this is true as

setting ab “ b , ba “ a works. If this holds, we can define, pa, bq „ pc, d ðñ abd “ cdbq and

a{b` c{d “ pabd ` cdbq{bbd. Also define, a{b ˚ c{d “ pabcq{dcb

First let’s note that the equivalence makes sense i.e. pa, bq „ pax, bxq@ x P R. This is true

as pa, bq „ pax, bxq ðñ abbx “ paxqpbxqb ðñ bbx “ pxqpbxqb ðñ bbbx “ pbxqpbxqb The

second implication is true as R is an integral domain and the last holds by definition.

Lemma 14. Addition is well-defined, commutative, has an inverse and an identity.

Proof. Firstly, a{b` 0{1 “ pab1q{p11bq “ pab1q{pbb1q “ a{b. Now, pa, bq „ pp, qq ùñ abq “

pqb. a{b` p´pq{q “ pabq ´ pqbq{bbq “ 0{1. Commutativity is easy as,

c{d` a{b “ pcdb ` abdq{pddbq “ pabd ` cdbq{bbd (ddb “ bbd by definition)

Lemma 15. Multiplication is well-defined, has an inverse and an identity.

Proof. Firstly, a{b ˚ 1{1 “ pab1q{p11bq “ pab1q{pbb1q “ a{b.

Now, a{b ˚ b{a “ pabaq{pabaq “ 1{1

Thus, if R obeys the (right) Ore condition the field of fractions is well-defined. Similar

concstruction can be done for the left case.

We can start similarly by creating polynomials in non-commuting variables, denoted as

F x1, ¨ ¨ ¨ , xm . The usual way to construct it is by creating a free algebra (words in the

variables xi) i.e we impose that a ¨ xi “ xi ¨ a @a P F, i P rms.

This however, does not satisfy either left or right Ore condition as E a, b such that xa “ yb

Thus, we start not with the free algebra but another ring in which a ¨ xi “ xi ¨ a` a. This

works and we get a field of fractions. This is not unique as taking the left construction

gives us another one. Buut these can be embedded in a universal one which is unique (upto

isomorphism) denoted as F px1, ¨ ¨ ¨ , xm q . The first chapter in [Clns77] discusses this very

well.
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Invariant Theory connection

Consider the left-right action of SLnpFq ˆ SLnpFq on the tuple pB1, ¨ ¨ ¨Bmq i.e pA,Cq

acts as pAB1C
T , ¨ ¨ ¨ABmC

T q. A polynomial p P Frx1, ¨ ¨ ¨xmn2s is said to be invariant if

ppB1, ¨ ¨ ¨Bmq “ ppAB1C
T , ¨ ¨ ¨ABmC

T q @A,C P SLnpFq ˆ SLnpFq. 2

Polynomials of the form, dM “ detp
ř

iMi b Biq where Mi P Mpd,Fq, are invariant as

determinant is multiplicative and detpAq “ detpCq “ 1. But these are just some of the

invariants what about others?

Clearly, the set of all invariant polynomials forms a ring denoted as Rpn,mq. Hilbert in a

landmark result proved that this ring is finitely generated (as an F- algebra), i.e there is a

finite set of polynomials tpi i P Iu such that every invariant polynomial can be written as

a polynomial in these i.e. f “ F ppiq. Since the set is finite, define βpn,mq “ max
iPI

degppiq.

Well, for the above action it turns out that all generators are of this form,

Theorem 16 (First Fundamental Theorem). The set of generators tpi i P Iu Ă tdM |M P

Mpn,Fq‘mu

That’s great. We have some connection, now that is, the matrices of non-full rank definitely

vanish on all the polynomials in Rpn,mq and thus we can check only on the finite set of

generators. Define βpn,mq “ max
iPI

degppiq. This is the bound N that we needed. But the

crucial question still remains. Can it be that ppB1, ¨ ¨ ¨Bmq “ 0 @i but ncrkpBq “ n? No.

Theorem 17. [BD06] Let N pn,mq “ tpB1, ¨ ¨ ¨Bmq | pipB1, ¨ ¨ ¨Bmq “ 0 @i P Iu. Then,

pB1, ¨ ¨ ¨Bmq P N pn,mq ðñ ncrkpBq ă n

N pn,mq is called the nullcone with respect to this action and the problem of checking if

noncommutative rank is full is equivalent to checking membership in the nullcone. This

nullcone membership problem can be studied in more generality for a general group and its

actions on any vector space.

Another line of very interesting work originated with [GGdOW15] giving analytic algorithms

for these nullcone questions. The algorithm in [GGdOW15] solves this nullcone problem

but its analysis uses just the fact that the degree bound is finite and doesn’t actually need

its value for the proof. Read the beautifully written survey [GdO18] for details on these

works.

2 Note - As a shorthand, we usually write the polynomial ppvq and not ppe1, ¨ ¨ ¨ , enq. For example, we

write ppB1, B2q “ detpB1 `B2q but this is a polynomial in 2n2 and not 2 variables.
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