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1 Introduction

The goal of the exposition is to provide an almost completely self-contained proof of the
construction of one-sided high dimensional expander as in [KO18]. The paper uses many
results from various sources as black-boxes and the aim is to reduce most of those depen-
dencies. The paper also discusses the symmetries of the constructed complex but we will
not discuss that as it has no bearing on the construction but is rather a useful property of it.
The required representation theory is not much and will be introduced, however, a couple
of results will be assumed.

2 Basic Definitions

Before we get into what a high dimensional expander (HDX) is, we need a few preliminary
definitions. The natural generalisation of graphs is hypergraphs and a simplicial complex is
a hypergraph with more structure which basically lets us “traverse” it more easily.

1. (Abstract) Simplicial Complex - Given a base set S, a simplicial complex X Ă 2S is
a collection of subsets which are downward closed, i.e. @A P X,B Ă A ùñ B P X.
The elements of X are called simplices and we denote by Xpiq the set of simplices of
size i` 1. The elements of Xp0q are called vertices and Xp1q are edges. We also have
a Xp´1q “ tHu. The largest n such that Xpnq is non-empty is called its dimension.

2. Pure - An n´dimensional simplicial complex X is pure if @A P X, DB P Xpnq, A Ă B

3. Link - For a simplex τ , its linkXτ “ tσ | σXτ “ H, σYτ P Xu. This basically amounts
to looking at the simplex τ , and looking at the complex above it, i.e. by removing
everything below it (including it). Xτ is a simplicial complex on Szτ because if σ1, σ2 P
Szτ, σ1 Ă σ2, σ2 P Xτ , then, by definition, σ1 X τ “ H. Clearly, σ1 Y τ Ă σ2 Y τ but
σ2 P Xτ ùñ σ2 Y τ P X ùñ σ1 Y τ P X (as X is a simplicial complex) and now by
the definition of Xτ , σ1 P Xτ . If the dimension of the complex is n and τ P Xpiq, and
dimpXτ q “ n´ i´ 1.

4. Connected - The 1-skeleton of X is the graph G “ pXp0q, Xp1qq. X is connected if
this 1-skeleton is. The 1-skeleton is important as we will define the spectral properties
of the complex in terms of these graphs.

5. Strongly Gallery Connected1 - X is strongly gallery connected if X is connected and
all its links are connected.

1This is not the actual definition but we as well might take it as it is equivalent and the original definition is
of no use here
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3 HDX - Overview

3.1 Concrete Definitions

Definition 1. For each k ď n ´ 2, τ P Xpkq, define µτ to be the second largest eigenvalue of
the weighted 1-skeleton:

tu, vu P Xτ p1q, wpu, vq “ pn´ k ´ 2q!|tσ P Xτ pn´ 1´ kq | tu, vu Ă σu|

Note that for the 1-D link i.e. k “ n´ 2, this is precisely the unweighted graph.

There are other definitions of HDX which include a distributionD which defines the weights
on the top layer(i.e Xpnq) and induces it downwards uniformly. These set of weights corre-
spond to the uniform distribution on the top layer.

Definition 2. For 0 ď λ ă 1, a pure n-dimensional finite simplicial complex X is a one-sided
λ-local-spectral expander if for every ´1 ď k ď n´ 2, and @τ P Xpkq, µτ ď λ.

This means that the 1-skeleton of every link is an expander. This requires them to be con-
nected in the first place and that is why the strongly gallery connected property is needed.
Moreover, purity is implicitly used in defining the weights as the sets in Xpiq get weights
induced from Xpi ´ 1q but that doesn’t work if for some set there is no set containing it.
The purity property prevents such a thing from happening.

3.2 The problem to solve

The goal is, given 0 ă λ ă 1 and n ą 1, to construct a family of pure n-dimensional finite
simplicial complexes tXpsq | s P Au where A Ă N is an infinite set such that the following
holds -

• Expansion - For every s P A,Xpsq is a one-sided λ-local-spectral expander.

• Bounded Degree - Every vertex is contained in a bounded number of n-dimensional
simplices, i.e., DQ,@s P A, v P Xpsqp0q, |tσ P Xpsqpnq | v P σu| ă Q

• Unbounded vertices - limsÑ8 |X
psqp0q| “ 8

3.3 Overview of the plan

This is how the entire flow of the rest of the paper is going to be.

1. Give a general mechanism to construct a complex X using a group G and set of it’s
subgroups Ki.

(a) Define a set of axioms that we want pG,Kiq to obey.

(b) Show that these axioms imply that X is pure and strongly gallery connected.

2. Define the group of elementary matrices and its subgroups we need, and prove that
they satisfy the above mentioned axioms.
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3. To prove that it is HDX, we start with the expansion property which is the crux. Here
we use the result from [Opp18] which states that if the 1-D links expand then all links
expand.

4. To show expansion of 1-D links, we define another property called orthogonality

(a) Prove that orthogonality implies expansion.

(b) Finally, we prove that the 1-D links are orthogonal.

5. We would also need to show the other 2 requirements i.e. bounded degree and un-
bounded vertices and that would be easy to do

4 Subgroup Geometry Systems

4.1 Coset Complex

Given a group G and a collection of subgroups pKiqiPI , we want to construct a simplicial
complexX. Define the cosets ofKi as the set of formal elements] tgKi | g P Gu but in which
we identify equal sets i.e. gKi “ hKi if they are equal as sets, this is equivalent to saying
that h´1g P Ki. Define a complex X over the base set tgKi | g P G, i P Iu in which all the
cosets are the vertices and pg0K0, ¨ ¨ ¨ , glKlq P Xplq ðñ @i, j ď l, giKi X gjKj ‰ H. Note
that this implies that no 2 subgroups can be same because if Ki “ Kj then giKi X gjKj ‰

ùñ giKi “ gjKj . This X so formed is denoted as XpG, pKiqiPIq. We now need the set of
axioms that will ensure that this complex is “nice”.

4.2 SGS axioms

Let τ Ă I and define Kτ “ XiPτKi. Also define KH “ G. pG, pKiqiPIq is called a subgroup
geometry system (SGS) if it obeys the following 3 axioms

1. @τ, σ Ă I, KτXσ “ xKτ ,Kσywhere x¨, ¨y denotes the subgroup generated by the union

2. @τ Ă I, i R τ, KτKi “ XjPτKjKi

3. @i P I, KI ‰ KIztiu

The axioms 1 and 3 weed out boundary cases like Ki ‰ G, teu because say Ki “ G, then
KI “ KIztiu XG “ KIztiu which violates axiom 3. Similarly, if Ki “ Kj or if Kj “ teu, then
by axiom 1 G “ KH “ KtiuXtju “ xKi,Kjy “ Ki but that we have seen is not allowed. The
main axiom is then the second one. One direction is trivial i.e. KτKi Ă XjPτKjKi because
if xy P KτKi, x P Kτ , y P Ki then x P Kj@j P τ and thus xy P KjKi. But the other is
not and it essentially is like a local-global (or a glueing) property which says that if have
elements in the local pairwise product we have one in the overall intersection which is in
the product. The proofs below will highlight the use of this property.

Note - As an abuse of notation, when X “ XpG, pKiqiPIq and pG, pKiqiPIq is an SGS, I will
simply write that the complex X is an SGS.
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4.3 Properties that SGS implies

As mentioned earlier, a necessary property that we need to build an expander is purity and
strongly gallery connectedness. We shall now prove that if X is an SGS, these properties
are ensured. We’ll prove a couple more which we’ll need later.

4.3.1 Uniformity

This is the most important property and we shall see implies most of the other ones. It
crucially uses Axiom 2.

Lemma 1. @l ď n, @σ “ pg1Ki1 , ¨ ¨ ¨ , glKilq P Xplq, Dg, σ “ pgKi1 , ¨ ¨ ¨ , gKilq

Proof. We prove this by induction on l.
Base Case - l “ 1, Trivial
Inductive Step - Assume true for l. Rename tKi1 , ¨ ¨ ¨ ,Kil`1

u to tT1, ¨ ¨ ¨ , Tl`1u for no-
tational convenience. By inductive hypothesis we can uniformize the first l terms i.e.,
σ “ pg1T1, ¨ ¨ ¨ , glTl, gl`1Tl`1q “ pgT1, ¨ ¨ ¨ , gTl, gl`1Tl`1q. Now, as σ P Xplq, by defini-
tion, each pair must intersect. Thus, @i P rls, Dki P Ti,mi P Tl`1 gki “ gl`1mi and thus,
g´1gl`1 P TiTl`1. By axiom 2, Dh P T1,¨¨¨ ,l ,m P Tl`1, hm “ g´1gl`1 ùñ gh “ gl`1m

´1.
Define g˚ “ gh. Clearly @ i ď l, g˚Ki “ ghTi “ gTi as h P Ki and g˚Tl`1 “ gl`1m

´1Tl`1 “

gl`1Tl`1 as m P Tl`1. Thus, σ “ pg˚T1, ¨ ¨ ¨ , g˚Tl`1q

4.3.2 Transitivity of top layer

Trivial from above, to map σ Ñ τ , uniformize both σ, τ . Then multiply by gh´1 where g, h
are the uniform elements of σ, τ respectively.

4.3.3 Purity

Let σ P Xpkq. By uniformity σ “ gpK1, ¨ ¨ ¨ ,Klq. Now, @g, gpK0, ¨ ¨ ¨ ,Knq P Xpnq as each of
the mutual intersection contains g. Thus, we have purity.

4.3.4 Links are Coset Complexes

Xτ – XpKτ , pKpτ Y iqqiPIzτ q We only need it for 1´D links and we will thus show it when
τ P Xpn´ 2q but the proof is exactly the same without this assumption.

Proof. The 1-D links are basically graphs and we need to construct a graph isomorphism.
That is a bijective mapping between vertices such that edge relations are preserved. WLOG,
assume τ “ t2, ¨ ¨ ¨ , nu. XpKτ , pKpτ Y iqqiPIzτ q “ pK2¨¨¨n, pK02¨¨¨n,K12¨¨¨nqqq. We have an
easy inclusion in one direction, g1K02¨¨¨n Ñ pK2, ¨ ¨ ¨Kn, g

1K0q “ pg
1K2, ¨ ¨ ¨ g

1Kn, g
1K0q This

is valid as, g1 “ g1 ¨ e P g1K0 but g1 P Ki,@i P t2, ¨ ¨ ¨nu. We need that this is surjective. Let
σ “ pK2, ¨ ¨ ¨Kn, gK0q. If g P K2¨¨¨n we would be done as it would be the image of gK02¨¨¨n.
If not, since its is a simplex we have pairwise intersections. Thus, @i P t2 ¨ ¨ ¨nu, Dki P
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Ki, li P K0, ki “ gli ùñ g “ kil
´1
i P KiK0. From axiom 2 g P K2¨¨¨nK0 “ g1l where

g1 P K2¨¨¨n, l P K0. Then, σ “ ppK2, ¨ ¨ ¨Kn, g
1K0q and we have a preimage g1K02¨¨¨n.

To see that edge relations are preserved, in the coset complex, pgK02¨¨¨n, hK12¨¨¨nq have an
edge iff h´1g P K12¨¨¨nK02¨¨¨n

Let’s look at their images. They share an edge only if pK2, ¨ ¨ ¨Kn, gK0, hK1q P Xτ ðñ

h´1g P K1K0 as we already know that the other intersections are non-empty (each is a
simplex). But g, h P K2¨¨¨n. Thus, h´1g P K1K0 ðñ h´1g P K12¨¨¨nK02¨¨¨n

4.3.5 Strongly gallery connected

It suffices to show that X is connected because if XpG, pKiqiPIq is an SGS, we have seen
that Xτ – XpKτ , pKτYiqiRτ which is also an SGS. Thus from the above claim we can deduce
that Xτ is connected too. From the lemma we proved in the last section, we will have that
X is strongly gallery connected

Lemma 2. If X is an SGS then X is strongly gallery connected

Proof. Each Ki creates a partition of G which are represented by tgKi | g P Gu. The 1-
skeleton of X is an |I|´partite graph and we know that @g, i, j pgKi, gKjq P Xp1q thus if we
show that pgKi, hKiq is connected then for any pgKi, hKjq we have a path from pgKihKiq

and an edge between phKi, hKjq. Assume for a contradiction that for some i the we have
2 disconnected components A “ gKi “ tg1Ki, ¨ ¨ ¨ glKiu and B “ hKi “ th1Ki, ¨ ¨ ¨hmKiu.
Now these basically define a partition of G into 2. One easy consequence of the axiom 3, i.e,
Ki ‰ Kj is that the partitions created are not same. That is for the same sets gKj ‰ gKi.
Therefore one of the cosets lKj will intersect both A and B and there are thus at least 1
edge each from lKj to some coset in A, B. Therefore, the are not disconnected.

Now we’ll define the specific complex which we will eventually prove is the HDX we seek.

5 Elementary Matrices Complex

Given a unital ring R, we consider 2 objects over it using a generating set tt1, ¨ ¨ ¨ tlu. One,
is another ring i.e. a finitely generated R´algebra R and the other is a free R´module T
generated with t1, t1, ¨ ¨ ¨ , tlu as a basis.

We can think of R as T equipped with a multiplication which is associative and distributive
over addition, this gives us a tensor product algebra kind of an interpretation. Another
way is to view it as a ring of polynomials in t1is modulo some relation. If there are no
relations, then it is the free nonunital algebra which is also called the ring of words (with
no empty string). If we add a unit 1 to the list of generators and impose the relations
that 1ti “ ti1 “ ti i P l, we get the free unital algebra also called the non-commutative
polynomial ring R “ Rxt1, ¨ ¨ ¨ tly –

ř

iPN T
bi. Note that, Tbi is the R´module of all

(non-commuting) polynomials of degree ď i. Further imposing titj “ tjti gives us the
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familiar ring of commutative polynomials. Similarly, we can create algebra of bounded
degree polynomials and so on.

The paper concerns only with unital R (though it doesn’t explicitly say this) and we can
thus think of them as the non-commutative polynomials.

5.1 The Coset Complex

The main group is the (multiplicative) group of elementary matrices,

ELn`1pRq “ xeijprq | 0 ď i, j ď n, r P Ry

where eijprq is the matrix with 11s on the diagonal, r on the i, jth entry and 0 elsewhere.
Clearly, the determinant of this is 1 and thus ELn`1pRq Ă SLn`1pRq. If R is a Euclidean
ring like say, Z, then both are equal.2 Define the subgroups,

Ki “ xejj`1pmq | j P t0, ¨ ¨ ¨nuzi,m P T y

Note that the subscripts are taken modulo n i.e enn`1 “ en0

5.1.1 Steinberg Group

We can instead look at ELn more abstractly as the Steinberg group generated by xijpRq
which satisfy the Steinberg relations,

xj1,j2pm1qxj1j2pm2q “ xj1j2pm1 `m2q (1)

rxj1,j2pm1q, xj2j3pm2qs “ xj1j3pm1m2q j1 ‰ j3 (2)

rxj1,j2pm1q, xj3j4pm2qs “ I j1 ‰ j4, j2 ‰ j3 (3)

Note that in the equations 2, 3 we have the commutator bracket, rg, hs :“ g´1h´1gh. We
have a natural map then StnpRq Ñ ELnpRq : xijprq Ñ eijprq.

6 Elementary Matrices are an SGS

Before we show that they are a SGS, we need a few lemmas characterising the subgroups to
make it easier to work with them. We will write T i to denote Tbi which is all polynomials
of degree at most i. Denote by rk, jq the interval from k to j ´ 1, i.e

rk, jq “

#

tk, k ` 1, ¨ ¨ ¨ , j ´ 1u k ă j

tk, k ` 1, ¨ ¨ ¨ , n, 0, 1, ¨ ¨ ¨ , j ´ 1u k ě j

+

Lemma 3. Ki is the group composed of matrices A “ pakjq such that

akj P

$

’

&

’

%

t1u k “ j

T j´k k ‰ j, i R rk, jq

t0u otherwise

,

/

.

/

-

2 If they are equal for a ring R, R is called general Euclidean. The exact requirements for this to hold are not
clear and this has deep connections to K-theory.
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Proof. We will prove it only for i “ n. Notice that Kn is the group of upper triangular
matrices. Observe that, rk, jq Y rj, kq “ t0, ¨ ¨ ¨ , nu. Thus at most one of akj can be 0 if the
above lemma is true.

Using Steinberg relation p2q we can create by induction, for every j ą k, ej,kpMqM P T k´j

where M are monomials. To add them up, we use the relation p1q and thus get each entry
as as polynomials thereby covering all of T j´k. Now to compose all these entries in a single
matrix we use relation p3q. For example, (blanks denote 0)

»

—

—

—

–

1 m1

1

1

1

fi

ffi

ffi

ffi

fl

¨

»

—

—

—

–

1

1

1 m2

1

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

1 m1

1

1 m2

1

fi

ffi

ffi

ffi

fl

Lets now prove the 3 axioms required for it to be an SGS.

Theorem 4. pELn`1pRq, pKiqiPIq is an SGS

Proof. Axiom 1 - KτXσ “ xKτ ,Kσy. Let Si generate Ki Then, Kτ is generated by XiPτSi.
The equivalence thus follows trivially for τ ‰ H. In that case we need to show that
ELn`1pRq “ xeii`1pmq |i P rns,m P T y. To see this , note that the generators clearly
generate a subset ELn`1pRq with pk, jqth entry of degree ď pj´ kq mod n` 1. To increase
degree we can use relation 2 and thus re02pmq, e21pmqs “ e01pm

2q

Axiom 2 We want to show that KτKl “ XiPτKiKl

Define the projection morphism πH : ELn`1pRq Ñ Kl which maps the common generators

to itself and the other ones to identity. To make it precise πHpeijprqq “

#

eijprq eijprq P Kl

I otherwise

+

This restricts to a map for any σ πσ : Kσ Ñ KσXl.

Lemma 5. πH : ELn`1pRq Ñ Kl is a homomorphism

Proof. To prove it the only thing we need to check is that the relations are preserved.

Relation 1 - ej1,j2pm1qej1j2pm2q “ ej1j2pm1 `m2q

Is trivially preserved as if eijpλq either remains same or maps to identity. In case one the
equation is unaffected in the other case everything becomes identity.

Relation 2 - rej1,j2pm1q, ej2j3pm2qs “ xj1j3pm1m2q j1 ‰ j3
If both ej1j2 , ej2,j3 are in Kl then the equation is unchanged. If even one is not in Kl then
using the characterisation of Kl, l P rji, j2q Y rj2, j3q “ rj1, j3q and thus ej1j3 R Kl. Thus we
have identity on both sides.

Relation 3 - rej1,j2pm1q, ej3j4pm2qs “ I j1 ‰ j4, j2 ‰ j3
Doing the same analysis it’s unchanged if both are in Kl if one isn’t then the LHS becomes
identity as rg, Is “ I
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Clearly even the restrictions are homomorphisms and denote their kernel as K´
σ . Then

@g P Kσ, gKl “ gπpgq´1Kl as πpgq´1 P Kl but πpgπpgq´1q “ I and thus, gπpgq´1 P K´
σ .

Therefore we can assume that the coset representatives come from K´
σ . Let us look at the

RHS and say x P XiPτKiKl. We have x “ giki “ gjkj gi P Ki i P τ ki, kj P Kl. This implies
g´1j gi P Kl but πHpg´1j giq “ kjk

´1
i but by assumption the should map to I and thus ki “ kj

and therefore gi “ gj . Continuing this for all, we have that all are equal and lie in Kτ and
thus x P KτKl. 3

Axiom 3 - This follows trivially from the description of subgroups by the generators.

7 Structure of the 1-D links (Heisenberg Groups)

We proved earlier that links are the same as coset complexes generated from Kτ instead of
G. In the case of the above complex, the 1-D links are of two kinds depending on which
2 subgroups we choose to ’omit’. First is of the type H :“ K1,3¨¨¨n “ xK123¨¨¨n,K013¨¨¨ny “

xe01pmq, e23pmqy. The third Steinberg relation says that e01pmq and e23pmq commute and
thus the subgroup generated by them commute. The following lemma then gives that the
spectrum here in uninteresting, i.e. second largest eigenvalue is 0.

Lemma 6. If G “ xK0,K1y and K0, K1 commute, then the complex XpG, pK0,K1qq is a
complete bipartite graph and therefore, its spectrum is t´1, 0, 1u.

Proof. Since G is generated by K0,K1 each element g “
ś

gi, but since K0,K1 commute
we can rearrange such that g “ g0g1, gi P Ki. From the definition we have that it is a
bipartite graph with vertices of type g1K0 and g0K1 where gi P Ki. There is an edge if
g1K0 X g0K1 ‰ H. Clearly, g1g0 P g1K0 but due to commutativity g1g0 “ g0g1 P g0K1 and
thus the bipartite graph is complete.

The important case is when H :“ K2¨¨¨n “ xe01pmq, e12pmqy which concretely are 3ˆ3 upper
triangular matrices of the form,

»

—

–

1 T T 2

1 T

1

fi

ffi

fl

, generated by x “

»

—

–

1 m

1

1

fi

ffi

fl

, y “

»

—

–

1

1 m

1

fi

ffi

fl

,

H is referred to as the ’Heisenberg Group’ because of its connections to physics. Throughout
the rest of the presentation we will denote X “ K12¨¨¨n “ xxy and Y “02¨¨¨n“ xyy. Define
the subgroup Z “ xrx, ysy. and it’s easy to see that rX,Zs “ rY, Zs “ I, i.e. Z commutes
with every group element. We will now proceed to look at the bounds of the second largest
eigenvalue of the graph which is the complex XpH, pX,Y qq

3Note - The paper doesn’t use this language but rather does it for l “ n and maps matrices to their upper
triangular half. While I think this approach is the same, it works more generally and the proof is easy to see.
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8 Orthogonal ùñ Expansion

In this section we will define a notion of orthogonality of subgroups and show that the coset
complex of the Heisenberg group expands iff the groups are close to orthogonal.

8.1 Orthogonality for Vector Subspaces

Given a vector space V equipped with an inner product, and a pair of subspaces U,W Ă V ,
define U 1 “ U X pU XW qK,W 1 “W X pU XW qK,

θpU,W q “ sup

ˇ

ˇ

ˇ

ˇ

xx, yy

‖x‖‖y‖

ˇ

ˇ

ˇ

ˇ

@x P U 1,@y PW 1

U,W are called ε´orthogonal if θpU,W q ď ε. This can also be related to the operator norm
of the projection matrices. Say we have orthogonal projections PU , PW , PUXW , then

θpU,W q ď ε ðñ ‖PUPW ´ PUXW ‖ ď ε

We’ll take the projection norm to be the definition of orthogonality. **Should I write a proof
for this? **

8.2 A quick dive into Representation Theory

Since we have groups and not vector spaces we need some machinery to make a conversion.
This is precisely what representation theory does, it linearizes groups.

Definition 3. For a groupG, aG´representation is a tuple pV, ρq where V is a vector space and
ρ : GÑ GLpV q is a group homomorphism. More concretely, if V is n-dimensional, the map ρ
assigns to each group element g, an n ˆ n invertible matrix ρpgq such that ρpghq “ ρpgqρphq

and ρpeq “ In. A representation is unitary if every ρpgq is unitary.

The space of invariant vectors of a subgroup H Ă G is defined as V H
ρ “ tv | ρpgqv “ v @g P

Hu. This is clearly a vector space and for the case we’re interested in, i.e the Heisenberg
group, we have 2 subspaces V X

ρ , V Y
ρ and since G “ xX,Y y, V G

ρ “ V X
ρ XV

Y
ρ . The subgroups

X,Y are said to be ε´orthogonal if for every unitary representation ρ, θpV X
ρ , V Y

ρ q ď ε. Now,
we define the projection maps to the respective spaces. These are easy to define if G is finite
and are basically the averaging map,

PV Xρ pvq “
1

|X|

ÿ

gPX

ρpgqv

To see that they project is easy ρphqPV Xρ pvq “
1
|X|

ř

gPX ρphqρpgqv “
1
|X|

ř

gPX ρpghqv “
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1
|X|

ř

gPXh ρpgqv “ PV Xρ pvq The only part to verify is that these are orthogonal.

xPV Xρ puq, vy “
1

|X|

ÿ

gPX

xρpgqu, vy

“
1

|X|

ÿ

gPX

xu, ρpg´1qvy As ρ is unitary

“
1

|X|

ÿ

g´1PX

xu, ρpg´1qvy Just changing order of summation

“ xu,
1

|X|

ÿ

g´1PX

ρpg´1qvy

“ xu, PV Xρ pvqy

8.3 Vreg and why bounding it suffices

It might seem that the ε-orthogonality definition is unwieldy as it is quantified over every
unitary representation. However, akin to the prime numbers and integers, there are small
representations which are the building blocks of all representations.

Definition 4 (Irreducible representation). Given a group G, a representation V, ρ is said to
be irreducible if for every proper subspace 0 ‰ W ‰ V , Dg P G,w P W, ρpgqw R W . This
essentially means that there is no smaller representation W sitting inside V .

Theorem 7 (Maschke). Given a finite group G, there exists a finite set of irreducible represen-
tations Vi such that every representation V – ‘iV ai

i , ai P Zě0

Thus, to prove ε-orthogonality we just need to check a finite list of irreducibles because
every other representation breaks down in this way as and by Cauchy-Schwartz, bounding
each of the direct sum suffices. But in fact, we can just check one.

Let G be a finite group and define a vector space of all formal sums of group elements
i.e. Vreg “ CrGs – C|G|. Define a basis tvg | g P Gu. The homomorphism is given by
ρpgqpvhq “ vhg i.e it’s a permutation matrix. This is called the (right) regular representation.
We use another theorem which says that this is that,

Theorem 8 (Peter-Weyl). Vreg – ‘iV
dimpViq
i where the summation is over all irreducible

representations of G

Putting it all together,

Theorem 9. X,Y are ε-orthogonal iff ‖PV Xρ PV Yρ ´ PV Gρ ‖ ď ε.

8.4 Equivalence between orthogonality and eigenvalue

8.4.1 Rephrasing λ

The main goal is to bound the second-largest eigenvalue of a biregular bipartite graph. Say
V “ V0 Y V1 is a birpartite graph with Vi being the 2 components such that each vertex in
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Vi has degree di. We need the seconlargest eigenvalue of its weighted adjacency matrix,
i.e., Muv “

1
di

if u P Vi, pu, vq P E. This matrix can be thought of as a linear map from the
(formal)vector space of vertices to itself. Since it is bipartite it can be decomposed as a map
between the 2 subspaces corresponding to the 2 components.

Let’s now formalize everything. Define the formal vector space S “ C|V | “ t
ř

vPV avev |av P

Cu 4 We need second largest eigenvalue of the map defined by the matrix M : S Ñ S.

To make it the largest eigenvalue we remove the 2 extreme eigenvectors (1|V | and p1|V0|,´1|V1|q)
which we know have eigenvalues of p1,´1q. Define the subspace

S1 “ t
ÿ

vPV

avev |
ÿ

vPV0

ev “
ÿ

vPV1

ev “ 0u

Note that S1 – C|V |´2 – C|V0|´1 ‘ C|V1|´1 “: S10 ‘ S11. The map M restricts to a map
M 1 : S1 Ñ S1 and moreover, it switches the components, i.e. let M 1pS1iq Ă S1i`1 because

M 1 “

«

0 M1

M0 0

ff

after reordering the basis.

To be more concrete, for u P Vi, Mieu “
1

di`1

ř

pu,vqPE ev Rescale the usual innerproduct on
S1i as xeu, evydiIru “ vs

Lemma 10. Let λ be the second highest eigenvalue of M . Then λ “ ‖M 1‖˚ “ ‖Mi‖˚ where
the norm is the operator norm5

Proof. By construction, the largest eigenvalue of M 1 is the second largest eigenvalue of M 1.
Moreover, as M 1 is symmetric, its operator norm and largest eigenvalue are equal. Thus,
λ “ ‖M 1‖˚

xM0eu, evy “ di`1

´

1
di`1

ř

pu,wqPExew, evy
¯

“ Ippu, vq P Eq “ xeu,M1evy. Therefore, these
are adjoint operators and thus their spectral norms are equal.

We have, ‖M 1v‖ “ ‖M0v0 `M1v1‖ “
a

d0‖M0v0‖2 ` d1‖M1v1‖2 Taking v1 “ 0, we have
‖M 1v‖˚ ě ‖M0‖˚ and in the other direction,

a

d0‖M0v0‖2 ` d1‖M1v1‖2 ď ‖M0‖˚
a

d0‖v0‖2 ` d1‖v1‖2 “ ‖M0‖˚‖v‖˚

8.4.2 Reformulating M 1

So, now we have our bipartite graph XpH, pX,Y qq.

The 2 components are VX “ tgX |g P Gu and VY “ thY |h P Gu. Moreover, hY “ h1Y ùñ

h1h´1 P Y and thus for each h there are Y identical elements.Therefore, |VX | “ |G{X| “
|G|
|X|

and similarly, |VY | “ |G{Y | “
|G|
|Y | .

Denote the analogous subspaces as above S1i by S1X , S
1
Y . We need to compute the norm of

matrix MX : S1X Ñ S1Y . Let’s restate the vector spaces and what exactly we will be proving.

4This can also be identified with the dual and seen as the space of functions from V Ñ C and that is what
the paper does. However, I find that unnecessarily cumbersome.

5
˚ is used to denote that it’s scaled and not the usual Euclidean norm
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Vreg – C|G| “

#

ÿ

gPG

ageg

+

, V 1reg “

#

ÿ

gPG

ageg |
ÿ

ag “ 0

+

SX – C|G{X| “

$

&

%

ÿ

xPG{X

axex

,

.

-

, S1X “

$

&

%

ÿ

xPG{X

axex |
ÿ

ax “ 0

,

.

-

SY – C|G{Y | “

$

&

%

ÿ

yPG{Y

ayey

,

.

-

, S1Y “

$

&

%

ÿ

yPG{Y

ayey |
ÿ

ay “ 0

,

.

-

S1 “ S1X ‘ S
1
Y

To connect this to the ε orthogonality we need to relate it to ‖PV Xρ PV Yρ ´ PV Gρ ‖. The above
is a map on Vreg and we need to relate it to the norm of M 1. We show the following
observation,

Lemma 11. SX – V X
ρ and similarly, SY – V Y

ρ

Proof. We’ll show it just for X as it is symmetric. In one direction, if g1 “ g ¨ x0 for some
x0 P X, then PXρ pg

1q “
ř

xPX g
1 ¨ x “

ř

xPX g ¨ x0 ¨ x “
ř

tPX g ¨ t “ PXρ pgq. In the other, if
PXρ pgq “ PXρ phq, then

ř

xPX g ¨x “
ř

xPX h ¨x which means that Dg “ h ¨x. Thus, the image
of projection map which is V X

ρ is in bijection with the space spanned the cosets G{X which
by definition is SX

Lemma 12. The following maps are orthogonal projections,

Vreg
I´PGρ
ÝÝÝÝÑ V 1reg

PXρ
ÝÝÑ S1X

Vreg
I´PGρ
ÝÝÝÝÑ V 1reg

PYρ
ÝÝÑ S1Y

Proof. In the matrix form PGρ “
1
|G|1 where 1 is the all ones matrix. Thus, for v “

ř

g ageg,

pI ´ PGρ qpvq “
ř

g

´

ag ´
ř

g ag
|G|

¯

eg. It’s easy to see that the image is V 1reg and it surjects.

We have already shown that P Tρ is an orthogonal projection to the space of invariants of T
for each T “ G,X, Y . Thus, pI ´ PGρ q

2 “ I ´ 2PGρ ` P
G
ρ

2 “ I ´ PGρ .

PXρ is clearly an orthogonal projection because we already know that PXρ on Vreg is and
here we remove a 1-d subspace from each such that the subspace removed from SX is the
image of PXρ

Corollary 13. Composing the 2 maps above we get that the following map (say, φ) is an
orthogonal projection.

Vreg ‘ Vreg

φ“

»

–

PXρ pI ´ P
G
ρ q 0

0 P Yρ pI ´ P
G
ρ q

fi

fl

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ S1X ‘ S
1
Y – S1

Lemma 14. The map MX “ PXρ
ˇ

ˇ

S1X
Moreover, ‖MX‖˚ “ ‖PXρ

ˇ

ˇ

S1X
‖2 “ ‖PXρ

ˇ

ˇ

S1Y
‖2
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Proof. From the explicit definition of Mi, we have MX : S1X Ñ S1Y such that MXpgXq “
1
dX

ř

ppgX,hY qPEq hY where dX is the degree of gX. From the uniformity property, we know
that, pgX, hY q P E ðñ Dg1, pgX, hY q “ pg1X, g1Y q P E. But, X X Y “ e ùñ h “ g1 “

gx x P X Thus, the set of neighbours of gX can be written as tgxY | x P Xu. Thus,

MXpgXq “
1

|X|

ÿ

xPX

pgxqY

“

˜

1

|X|

ÿ

xPX

ρpxqg

¸

“ PV Xρ pgqY

Now the spectral norm of the projection matrices are defined over the usual Euclidean norm
but we had defined a scaled norm for Mi. Denote the usual norm by ‖‖2 and the scaled
norm by ‖‖˚. We had that for VX , ‖g‖˚ “

a

|G{X|‖g‖2 Thus,

‖MX‖˚ “ max
vPS1X

‖Mxpvq‖˚
‖v‖˚

“ max
vPS1X

a

|G{Y |‖Mxpvq‖2
a

|G{X|‖v‖2

“ max
vPS1X

‖PV Xρ pvq‖2
‖v‖2

because in our case |X| “ |Y |

The second equality just follows from the fact that S1X – S1Y

Theorem 15. X,Y are ε-orthogonal iff ‖M 1‖˚ ď ε

Proof. From Theorem 9, we have ε-orthogonality iff ‖PXρ pPV Yρ ´ PV Gρ q‖2 ď ε. Since each is
an orthogonal projection, we have,

‖PXρ pPV Yρ ´ PV Gρ q‖2 “ max
vPVreg

‖PXρ pPV Yρ ´ PV Gρ pvqq‖2
‖v‖2

“ max
vPVreg

‖PV Xρ pPV Yρ qpI ´ PV Gρ qpvq‖2
‖v‖2

“ max
wPS1

‖PV Xρ pPV Yρ qpwq‖2
‖w‖2

Since the projection is orthogonal ‖v‖ “ ‖w‖

“ max
zPS1Y

‖PV Xρ pzq‖2
‖z‖2

Since the projection is orthogonal ‖z‖ “ ‖w‖

“ ‖PXρ
ˇ

ˇ

S1Y
‖2 “ ‖MX‖˚ By the previous lemma

Thus, X,Y are ε-orthogonal iff ‖M 1‖˚ ď ε

9 1-D links are ε-orthogonal

This is a result from [EJZ09] which proves the orthogonality on the way to prove Prop-
erty(T) for ELnpRq. It proves a much general version of this among other things but the
proof of the case we need is fairly straightforward.
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Theorem 16. Given H “ ELn`1pFqrts{xtsyq and X,Y defined as before, X,Y are 1?
q -

orthogonal i.e. for any irreducible unitary representation ρ, θpV X
ρ , V Y

ρ q ď
1?
q

Proof. Consider an irreducible unitary representation pV, ρq. Since rX,Zs “ rY, Zs “ 1,
the subgroup Z commutes with the entire group and thus ρpzq commutes with every ρpgq.
Hence by Schur’s lemma, 6 ρpzq “ λI

Let’s assume ρ is injective. This is not necessarily true and we will return to this later. If
V Y “ 0, then by symmetry so is V X and we trivially have the orthogonality. So assume
that’s not the case. Let 0 ‰ u P V Y . Let L “ spanCpρpxqu | x P Xq. L is clearly X

and Z invariant i.e. @v P L, g P X,Z, ρpgqv P L. Now, ρpyqpρpxquq “ ρpxyrx, ysqu “

ρprx, ysqρpxyqu “ λρpxqu P L. Thus, L is G invariant and since V is irreducible, L “ V .
To compute V X , we take the image of V “ L under the projection PXρ which gives us
V X “ spanCpuxq where uX “

ř

xPX ρpxq ¨ u. By symmetry V Y is also one-dimensional and
we already have u P V Y and thus V Y “ spanCpuq.

Lemma 17. xu, ρpxquy “ 0 @x P Xzt1u. And thus, ‖ux‖ “
a

|X|‖u‖

Proof. Let e ‰ y P Y . Now we have,

xu, ρpxquy “ xρpyqu, ρpyqρpxquy Since ρ is unitary

“ xu, ρpyqρpxquy Since u P V Y , ρpyqu “ u

“ xu, λρpxquy As computed above, λ “ ρprx, ysq

By our assumption of injectivity, λ “ 1 only for the identity, but for any non-trivial y,
rx, ys ‰ e. Thus, xu, ρpxquy “ 0 and ‖ux‖2 “ x

ř

xPX ρpxqu,
ř

xPX ρpxquy “ |X|xu, uy

Since the representation is irreducible, V X X V Y “ V G “ p0q. Thus, in the definition of
angle, V X 1 “ V X Thus,

θpV X , V Y q “ min
aPV Y ,bPV X

xa, by

‖a‖‖b‖
“
xu, uxy

‖u‖‖ux‖
Since V X , V Y are one-dimensional

“
ÿ

xPX

xu, ρpxquy

‖u‖‖ux‖
“

xu, uy
a

|X|‖u‖‖u‖
“

1
a

|X|
From the above lemma

However, we had made the assumption that ρ is injective but if it is not we look at the image
ρpGq, now, we can run the argument again for this group and the representation being the
mere inclusion into GLn, thus we have 1?

|ρpXq|
-orthogonality and we need to bound the

smallest subgroup. If we define the Heisenberg group with R “ Fqrts{ts then a subgroup of
X would be a subgroup of R and the smallest one is of size q which is just X with entries
from Fq. Therefore, |ρpXq| ě q and we have 1?

q -orthogonality. By the equivalence with
spectral gap, it’s second highest eigenvalue is also bounded above by it.

6Given a G-representation pV, ρq, map φ : V Ñ V is G-linear if, @g P G, ρpgqφpvq “ φpρpgqpvqq. Schur’s
lemma states that the only G-linear maps between V, V are of the form λI. If g commutes with every element,
then, ρpgq clearly satisfies the G-linearity conditions and thus by the lemma is λI
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10 Wrapping it up

Let’s now prove the other 2 requirements and tie it all together to give us the final result.

10.1 Infinite Vertices

The |XpSqp0q| “
ř

i |ELn`1pRq{Ki| ě n|G|{|K0| From the explicit description of Ki, (
see Theorem 3) it’s easy to see that ď |Ki| “ |T |pn´1q

2
“ q2pn´1q

2
and ELn`1pRq “

|R|npn´1q{2 “ |Fqrts{xtsy “ qsnpn´1q{2. Thus, |XpSqp0q| “ nqsnpn´1q{2´2pn´1q
2

which clearly
tends to infinity.

10.2 Bounded Degree

We saw above that |Ki| “ q2pn´1q
2

is not a function of s and is a constant, say Q. Now,
take an arbitrary vertex say, gKi. By the uniformity lemma, each σ containing is of the form
σ “ phK0, ¨ ¨ ¨hKnq such that hKi “ gKi. Thus, |tσ P Xpsqpnq | v P σu| “ |h | hKi “ gKi| “

|Ki| ď Q

10.3 Expansion

We have shown already Theorem 9 that all 1-d links expand with ď 1?
q . We now quote the

result from [Opp18].

Theorem 18 ( [Opp18]). Given a pure n-dimensional strongly gallery connected simplicial
complex X such that µτ ď λ, @τ P Xpn´ 2q, then µτ ď λ

1´kλ @τ P Xpn´ 2´kq. In particular,
X is a one-sided λ

1´pn´1qλ -local spectral expander.

Thus, plugging in λ “ 1?
q , we get that X is a one-sided 1?

q´n`1 local spectral expander.

10.4 Final Result

Theorem 19. Let n ě 2 and let q be a prime power such that q ą pn ´ 1q2. For s P N, let
Fqrts{ts to be the Fq algebra with the generating set t1, tu. Let Xpsq be the simplicial complex
of the subgroup geometry system of ELn`1pFqrts{tsq Then for every s ą n, the following holds
for Xpsq

1. Xpsq is a pure n-dimensional, (n+1)-partite, strongly gallery connected clique complex
with no free faces.

2. Xpsq is finite and the number of vertices of Xpsq tends to infinity as s tends to infinity.

3. There is a constant Q “ Qpqq such that for every s, each vertex of Xpsq is contained in
exactly Q n-dimensional simplices.

4. Xpsq is a 1?
q´n`1 -local spectral expander.
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