SDIT and Non-Commutative Ranks of Matrix Lie Algebras

> Gábor Ivanyos (ELKH, Hungary), **Tushant Mittal (University of Chicago)**, Youming Qiao (University of Technology Sydney)

OUTLINE

Introduction

Problem and motivation

Our Results

2. Result overview with quick survey

Lie Algebras

3. Definitions and complete statements of results

Conclusion

Summary and open problems

Introduction

Problem statement and motivation

1

 $\longrightarrow f(z_1, \cdots, z_m)$

• Decision Problem - Is *f* identically zero ?

- Decision Problem Is *f* identically zero ?
- Natural randomized algorithm Derandomize this!

- Decision Problem Is *f* identically zero ?
- Natural randomized algorithm Derandomize this!
- Is it even in NP ? Succinct certificates?

• This case is general enough!

- This case is general enough!
 - Kabanets—Impagliazzo '04 SDIT ∈ NSUBEXP implies circuit lower bounds.(NEXP ⊈ P/poly or VP ≠ VNP)

- This case is general enough!
 - Kabanets—Impagliazzo '04 SDIT ∈ NSUBEXP implies circuit lower bounds.(NEXP ⊈ P/poly or VP ≠ VNP)
 - One upshot is that we can now hope to use some linear algebra.

• Let \mathscr{A} be the linear space spanned by the tuple of $n \times n$ matrices (A_1, \cdots, A_m) over \mathbb{F} .

• Let \mathscr{A} be the linear space spanned by the tuple of $n \times n$ matrices (A_1, \cdots, A_m) over \mathbb{F} .

• Let \mathscr{A} be the linear space spanned by the tuple of $n \times n$ matrices (A_1, \dots, A_m) over \mathbb{F} .

• \mathscr{A} is singular if every matrix in it is singular i.e., if the symbolic

determinant det
$$\left(\sum_{i} x_i A_i\right)$$
 is identically zero.

Certificate 1 - Shrunk subspace

U is shrunk subspace if $\dim(\mathscr{A}U) < \dim(U)$

• Certificate 1 - Shrunk subspace

• Certificate 2 - Linear Kernel

U is shrunk subspace if $\dim(\mathscr{A}U) < \dim(U)$

Certificate 1 - Shrunk subspace

• Certificate 2 - Linear Kernel

U is shrunk subspace if $\dim(\mathscr{A}U) < \dim(U)$

• (v_1, \dots, v_m) is a linear kernel for \mathscr{A} if $\left(\sum_{i=1}^m x_i A_i\right) \sum_{i=1}^m x_i v_i = 0$

identically.

 Such a certificate can be found and verified in poly(n) time.
A bit of history

Singular Matrix Spaces

Singular matrix landscape

See Avi's talk at IAS titled "Linear Spaces of matrices" for more connections and background

Goal - To find more examples and solve SDIT for them

Our Results

Overview of the results

2.

Result 1- New examples

Result 1- New examples

Result 2 - Algorithm

Lie Algebras

3.

Vector Spaces with a bracket

Matrix Lie algebras

Matrix Lie algebras

• A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB - BA.

Matrix Lie algebras

• A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB - BA.
- A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB BA.
- Examples -

- A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB BA.
- Examples
 g𝔅(𝔽ⁿ) := n × n matrices over 𝔽.

• A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB - BA.

Examples
g𝔅(𝔽ⁿ) := n × n matrices over 𝔽.
𝔅𝔅𝔅_n := {A | tr(A) = 0}.

• A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB - BA.

Examples
 g𝔅(𝔽ⁿ) := n × n matrices over 𝔽.
 𝔅𝔅𝔅_n := {A | tr(A) = 0}.
 𝔅𝔅_n := {A | A + A^T = 0}.

• A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB - BA.

Examples
 g𝔅(𝔽ⁿ) := n × n matrices over 𝔽.
 𝔅𝔅𝔅_n := {A | tr(A) = 0}.
 𝔅𝔅_n := {A | A + A^T = 0}.

• A linear subspace of $n \times n$ matrices over a field \mathbb{F} is a matrix Lie algebra if it is closed under the commutator [A, B] := AB - BA.

Examples g𝔅(𝔽ⁿ) := n × n matrices over 𝔽. 𝔅𝔅𝔅_n := {A | tr(A) = 0}. 𝔅𝔅_n := {A | A + A^T = 0}.

• A matrix Lie algebra \mathscr{A} is irreducible if for every subspace $U \neq \{0\}, \mathbb{F}^n$ we have $\mathscr{A}U \nsubseteq U$.

 Theorem 1 - Every non-zero irreducible matrix Lie algebra over ℂ has no shrunk subspaces.

 Theorem 1 - Every non-zero irreducible matrix Lie algebra over ℂ has no shrunk subspaces.

- Theorem 1 Every non-zero irreducible matrix Lie algebra over ℂ has no shrunk subspaces.
- Main idea is to prove it by showing that existence of shrunk subspaces contradicts irreducibility.

- Theorem 1 Every non-zero irreducible matrix Lie algebra over ℂ has no shrunk subspaces.
- Main idea is to prove it by showing that existence of shrunk subspaces contradicts irreducibility.

- Theorem 1 Every non-zero irreducible matrix Lie algebra over ℂ has no shrunk subspaces.
- Main idea is to prove it by showing that existence of shrunk subspaces contradicts irreducibility.
- This result also obtained independently by Makam-Derksen.

Lie group <-> Lie algebra

Lie group <-> Lie algebra

Timothy Budd, adapted from *Illustrating Geometry* - Keenan

Lie group <-> Lie algebra

- Lie group Group that is also a manifold.
- Lie algebras \mathfrak{g} over \mathbb{C} <-> Tangent spaces of a Lie groups G.
- Denoted as Lie(G) = g.
 Eg Lie(SL_n) = \$l_n

Timothy Budd, adapted from *Illustrating Geometry* - Keenan

• Idea 1 - Show invariance under \mathscr{A} by using its Lie group.

Idea 1 - Show invariance under A by using its Lie group.
 Lemma - If a subspace is invariant under G, it is invariant under Lie(G).

Idea 1 - Show invariance under A by using its Lie group.
 Lemma - If a subspace is invariant under G, it is invariant under Lie(G).

- Idea 1 Show invariance under A by using its Lie group.
 Lemma If a subspace is invariant under G, it is invariant under Lie(G).
- Lemma If \mathscr{A} is nc-singular, there exists a canonical subspace that is invariant under any X such that X stabilizes \mathscr{A} , i.e., $X\mathscr{A}X^{-1} = \mathscr{A}$.

- Idea 1 Show invariance under A by using its Lie group.
 Lemma If a subspace is invariant under G, it is invariant under Lie(G).
- Lemma If A is nc-singular, there exists a canonical subspace that is invariant under any X such that X stabilizes A, i.e., XAX⁻¹ = A.
 Fact G stabilizes Lie(G).

General version via composition factors

General version via composition factors

 For every A, there exists a composition series consisting of a finite set of irreducible matrix Lie algebras each called a composition factor of A.

General version via composition factors

- For every A, there exists a composition series consisting of a finite set of irreducible matrix Lie algebras each called a composition factor of A.
- Theorem 1 Let A be a matrix Lie algebra over C such that none of the composition factors are zero. Then, A does not have shrunk subspaces.

• Theorem 2 - Let \mathfrak{g} be a semi-simple Lie algebra over \mathbb{C} and ρ be an irreducible representation of \mathfrak{g} . Then, $\mathscr{A} = \rho(\mathfrak{g})$ admits a linear kernel if and only if

• Theorem 2 - Let \mathfrak{g} be a semi-simple Lie algebra over \mathbb{C} and ρ be an irreducible representation of \mathfrak{g} . Then, $\mathscr{A} = \rho(\mathfrak{g})$ admits a linear kernel if and only if

• Theorem 2 - Let \mathfrak{g} be a semi-simple Lie algebra over \mathbb{C} and ρ be an irreducible representation of \mathfrak{g} . Then, $\mathscr{A} = \rho(\mathfrak{g})$ admits a linear kernel if and only if

$$\circ \rho = 0 \text{ or } \rho \cong \text{ad.}$$

• Abstract Lie algebras - A vector space g with a bilinear map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that satisfies -

Abstract Lie algebras - A vector space g with a bilinear map
[· , ·] : g × g → g that satisfies o [x, y] = - [y, x] and thus [x, x] = 0.

Abstract Lie algebras - A vector space g with a bilinear map
[· , ·] : g × g → g that satisfies o [x, y] = - [y, x] and thus [x, x] = 0.
o Jacobi identity.

Abstract Lie algebras - A vector space g with a bilinear map
[·,·]: g × g → g that satisfies
[x,y] = - [y,x] and thus [x,x] = 0.
Jacobi identity.

- Abstract Lie algebras A vector space g with a bilinear map
 [·,·]: g × g → g that satisfies
 [x, y] = [y, x] and thus [x, x] = 0.
 Jacobi identity.
- Can build matrix lie algebras via a map $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ such that $\rho[x, y] = [\rho(x), \rho(y)]$.

- Abstract Lie algebras A vector space g with a bilinear map
 [·,·]: g × g → g that satisfies
 [x, y] = [y, x] and thus [x, x] = 0.
 Jacobi identity.
- Can build matrix lie algebras via a map $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ such that $\rho[x, y] = [\rho(x), \rho(y)]$.

• The image of ρ is a matrix Lie algebra!

- Abstract Lie algebras A vector space g with a bilinear map
 [·,·]: g × g → g that satisfies
 [x, y] = [y, x] and thus [x, x] = 0.
 Jacobi identity.
- Can build matrix lie algebras via a map $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ such that $\rho[x, y] = [\rho(x), \rho(y)]$.
 - $_{\circ}$ The image of ρ is a matrix Lie algebra!
 - The pair (ρ, V) is called a representation of \mathfrak{g} .
How do we build matrix Lie algebras?

- Abstract Lie algebras A vector space g with a bilinear map
 [·,·]: g × g → g that satisfies
 [x,y] = [y,x] and thus [x,x] = 0.
 Jacobi identity.
- Can build matrix lie algebras via a map $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ such that $\rho[x, y] = [\rho(x), \rho(y)]$.

 $_{\circ}$ The image of ρ is a matrix Lie algebra!

- The pair (ρ, V) is called a representation of \mathfrak{g} .
- o If \mathfrak{g} is a matrix Lie algebra, can take $\rho = \mathrm{id}$.

• Adjoint representation - (ad, \mathfrak{g}) defined as ad(x)y = [x, y].

Adjoint representation - (ad, g) defined as ad(x)y = [x, y].
 g is simple if ad(g) is irreducible.

- Adjoint representation (ad, g) defined as ad(x)y = [x, y].
 g is simple if ad(g) is irreducible.
 - $\circ \mathfrak{g}$ is semi-simple if it is a direct sum of simple Lie algebras.

- Adjoint representation (ad, g) defined as ad(x)y = [x, y].
 g is simple if ad(g) is irreducible.
 - $\circ \mathfrak{g}$ is semi-simple if it is a direct sum of simple Lie algebras.
- Let $\mathscr{A} = \operatorname{ad}(\mathfrak{g})$ and let $(\operatorname{ad}(a_1), \cdots, \operatorname{ad}(a_m))$ be a basis for it.

Adjoint representation - (ad, g) defined as ad(x)y = [x, y].
g is simple if ad(g) is irreducible.

 $\circ \mathfrak{g}$ is semi-simple if it is a direct sum of simple Lie algebras.

• Let $\mathscr{A} = \operatorname{ad}(\mathfrak{g})$ and let $(\operatorname{ad}(a_1), \cdots, \operatorname{ad}(a_m))$ be a basis for it.

$$\sum_{i} x_{i} \operatorname{ad}(a_{i}) \sum_{i} x_{i} a_{i} = \sum_{i} (\operatorname{ad}(\mathbf{a}_{i})\mathbf{a}_{i}) x_{i}^{2} + \sum_{i < j} (\operatorname{ad}(\mathbf{a}_{i})\mathbf{a}_{j} + \operatorname{ad}(\mathbf{a}_{j})\mathbf{a}_{i}) x_{i} x_{j}$$

Adjoint representation - (ad, g) defined as ad(x)y = [x, y].
g is simple if ad(g) is irreducible.

 $\circ \mathfrak{g}$ is semi-simple if it is a direct sum of simple Lie algebras.

• Let $\mathscr{A} = \operatorname{ad}(\mathfrak{g})$ and let $(\operatorname{ad}(a_1), \cdots, \operatorname{ad}(a_m))$ be a basis for it.

$$\sum_{i} x_{i} \operatorname{ad}(a_{i}) \sum_{i} x_{i} a_{i} = \sum_{i} (\operatorname{ad}(\mathbf{a}_{i})\mathbf{a}_{i}) x_{i}^{2} + \sum_{i < j} (\operatorname{ad}(\mathbf{a}_{i})\mathbf{a}_{j} + \operatorname{ad}(\mathbf{a}_{j})\mathbf{a}_{i}) x_{i} x_{j}$$

• $ad(a_i)a_i = [a_i, a_i] = 0$ and

Adjoint representation - (ad, g) defined as ad(x)y = [x, y].
g is simple if ad(g) is irreducible.

 $\circ \mathfrak{g}$ is semi-simple if it is a direct sum of simple Lie algebras.

• Let $\mathscr{A} = \operatorname{ad}(\mathfrak{g})$ and let $(\operatorname{ad}(a_1), \cdots, \operatorname{ad}(a_m))$ be a basis for it.

$$\sum_{i} x_{i} \operatorname{ad}(a_{i}) \sum_{i} x_{i} a_{i} = \sum_{i} (\operatorname{ad}(\mathbf{a}_{i})\mathbf{a}_{i}) x_{i}^{2} + \sum_{i < j} (\operatorname{ad}(\mathbf{a}_{i})\mathbf{a}_{j} + \operatorname{ad}(\mathbf{a}_{j})\mathbf{a}_{i}) x_{i} x_{j}$$

•
$$ad(a_i)a_i = [a_i, a_i] = 0$$
 and
• $ad(a_i)a_j + ad(a_j)a_i = [a_i, a_j] + [a_j, a_i] = 0$.

 Theorem 2 - Let g be a semi-simple Lie algebra over C and ρ be an irreducible representation of g. Then,
 𝒜 = ρ(g) admits a linear kernel if and only if

 Theorem 2 - Let g be a semi-simple Lie algebra over C and ρ be an irreducible representation of g. Then,
 𝒜 = ρ(g) admits a linear kernel if and only if

• Theorem 2 - Let \mathfrak{g} be a semi-simple Lie algebra over \mathbb{C} and ρ be an irreducible representation of \mathfrak{g} . Then, $\mathscr{A} = \rho(\mathfrak{g})$ admits a linear kernel if and only if

$$\circ \rho = 0 \text{ or } \rho \cong \text{ad.}$$

Density

Density

Two proofs of Theorem 2 Density

Two proofs of Theorem 2 Density

Two proofs of Theorem 2 Density Chevalley Basis

Two proofs of Theorem 2 Density Chevalley Basis

Every semi-simple lie algebra can be generated by two elements.

• Every semi-simple Lie algebra has a root structure and admits a Chevalley basis.

Theorem 3 - Given as input, A, a matrix Lie algebra over
 C there is a deterministic polynomial time algorithm to test if A is singular.

Theorem 3 - Given as input, A, a matrix Lie algebra over
 C there is a deterministic polynomial time algorithm to test if A is singular.

- Theorem 3 Given as input, A, a matrix Lie algebra over
 C there is a deterministic polynomial time algorithm to test if A is singular.
- Simple fact SDIT for an upper-triangular space is PIT for product of linear forms, i.e., depth-2 circuit (easy) :)

• For every matrix algebra, $\mathscr{A},$ there exists a subalgebra $\mathfrak{h} \leq \mathscr{A}$ such that

- For every matrix algebra, $\mathscr{A},$ there exists a subalgebra $\mathfrak{h} \leq \mathscr{A}$ such that
 - \mathfrak{h} is singular iff \mathscr{A} is.

- For every matrix algebra, $\mathscr{A},$ there exists a subalgebra $\mathfrak{h} \leq \mathscr{A}$ such that
 - \mathfrak{h} is singular iff \mathscr{A} is.
 - There exists a T such that $T\mathfrak{h}T^{-1}$ is upper-triangular.

- For every matrix algebra, $\mathscr{A},$ there exists a subalgebra $\mathfrak{h} \leq \mathscr{A}$ such that
 - \mathfrak{h} is singular iff \mathscr{A} is.
 - There exists a T such that $T\mathfrak{h}T^{-1}$ is upper-triangular.

- For every matrix algebra, $\mathscr{A},$ there exists a subalgebra $\mathfrak{h} \leq \mathscr{A}$ such that
 - \mathfrak{h} is singular iff \mathscr{A} is.
 - There exists a T such that $T\mathfrak{h}T^{-1}$ is upper-triangular.
- de Graaf, Ivanyos, Rónyai '96 gave a deterministic algorithm to compute such a ${\mathfrak h}.$

Conclusion

Summary and open problems

Summary

Summary

• We prove that representations of Lie algebras, i.e., matrix Lie algebras provide examples of singular spaces without shrunk subspaces i.e. with full non-commutative rank.
• We prove that representations of Lie algebras, i.e., matrix Lie algebras provide examples of singular spaces without shrunk subspaces i.e. with full non-commutative rank.

- We prove that representations of Lie algebras, i.e., matrix Lie algebras provide examples of singular spaces without shrunk subspaces i.e. with full non-commutative rank.
- We also show that such spaces do not posses a simple certificate in the form of linear kernels. (ruling out certain brute-force linear algebraic algorithms)

- We prove that representations of Lie algebras, i.e., matrix Lie algebras provide examples of singular spaces without shrunk subspaces i.e. with full non-commutative rank.
- We also show that such spaces do not posses a simple certificate in the form of linear kernels. (ruling out certain brute-force linear algebraic algorithms)

- We prove that representations of Lie algebras, i.e., matrix Lie algebras provide examples of singular spaces without shrunk subspaces i.e. with full non-commutative rank.
- We also show that such spaces do not posses a simple certificate in the form of linear kernels. (ruling out certain brute-force linear algebraic algorithms)
- We give a deterministic algorithm to decide singularity of such spaces.

• Extend the result to Lie algebras over other fields.

- Extend the result to Lie algebras over other fields.
- Can the algorithm be made black-box?

- Extend the result to Lie algebras over other fields.
- Can the algorithm be made black-box?
- Find more examples!

- Extend the result to Lie algebras over other fields.
- Can the algorithm be made black-box?
- Find more examples!

Thank you!

- Extend the result to Lie algebras over other fields.
- Can the algorithm be made black-box?
- Find more examples!

Thank you!

• Glad to hear your feedback/questions - tushant@uchicago.edu.