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• Decision Problem - Is  identically zero ?f
• Natural randomized algorithm - Derandomize this!

• Is it even in  ? Succinct certificates?𝖭𝖯
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• Kabanets—Impagliazzo ’04 -  implies circuit lower 

bounds.(  or )
𝖲𝖣𝖨𝖳 ∈ 𝖭𝖲𝖴𝖡𝖤𝖷𝖯

𝖭𝖤𝖷𝖯 ⊈ 𝖯/𝗉𝗈𝗅𝗒 𝖵𝖯 ≠ 𝖵𝖭𝖯
• One upshot is that we can now hope to use some linear algebra.
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The matrix space viewpoint

● Let  be the linear space spanned by the tuple of  matrices 

 over .  

𝒜 n × n
(A1, ⋯, Am) 𝔽

●  is singular if every matrix in it is singular i.e., if the symbolic 

determinant  is identically zero.  

𝒜

det (∑
i

xiAi)
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Two kinds of certificates

● Certificate 1 - Shrunk subspace 

𝔽 n

U
𝒜 = (A1, A2, . . . , Am)

𝔽 n

A1U
A2UAmU𝒜U

 is shrunk subspace if U dim(𝒜U ) < dim(U )

● Certificate 2 - Linear Kernel

●  is a linear kernel for  

if  

identically.

● Such a certificate can be found and 

verified in  time. 

(v1, ⋯, vm) 𝒜

(
m

∑
i=1

xiAi)
m

∑
i=1

xivi = 0

poly(n)



A bit of history



A bit of history
       Singular Matrix Spaces



A bit of history
       Singular Matrix Spaces

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2



A bit of history
       Singular Matrix Spaces

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19

  
Matroid 

Intersection

rk(Ai) = 1



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19

  
Matroid 

Intersection

rk(Ai) = 1



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19

  
Matroid 

Intersection

rk(Ai) = 1
✓Edmonds ’79, Lovász ’89 
✓Ivanyos-Karpinsky-Qiao-Santha ’15 
✓Gurjar-Thierauf ‘17



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

✓Garg-Gurvits-Oliveira 
-Wigderson ‘16

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19

  
Matroid 

Intersection

rk(Ai) = 1
✓Edmonds ’79, Lovász ’89 
✓Ivanyos-Karpinsky-Qiao-Santha ’15 
✓Gurjar-Thierauf ‘17



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

✓Garg-Gurvits-Oliveira 
-Wigderson ‘16
✓Ivanyos-Qiao- 
Subrahmanyam ‘18

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19

  
Matroid 

Intersection

rk(Ai) = 1
✓Edmonds ’79, Lovász ’89 
✓Ivanyos-Karpinsky-Qiao-Santha ’15 
✓Gurjar-Thierauf ‘17



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

✓Garg-Gurvits-Oliveira 
-Wigderson ‘16
✓Ivanyos-Qiao- 
Subrahmanyam ‘18

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19

  
Matroid 

Intersection

rk(Ai) = 1
✓Edmonds ’79, Lovász ’89 
✓Ivanyos-Karpinsky-Qiao-Santha ’15 
✓Gurjar-Thierauf ‘17



A bit of history
       Singular Matrix Spaces

Shrunk 
subspaces

✓Garg-Gurvits-Oliveira 
-Wigderson ‘16
✓Ivanyos-Qiao- 
Subrahmanyam ‘18

 
Matroid-Parity, 
Graph Rigidity  

rk(Ai) = 2

✓Lovasz ’89,  
✓Raz-Wigderson ’19

  
Matroid 

Intersection

rk(Ai) = 1
✓Edmonds ’79, Lovász ’89 
✓Ivanyos-Karpinsky-Qiao-Santha ’15 
✓Gurjar-Thierauf ‘17

✓Makam-Wigderson’19 
-These techniques can’t 
generalize (directly) 
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Singular matrix landscape
       Singular Matrix Spaces

Shrunk Subspaces/ 
Non-commutative 

singular

•  Isolated examples 
•  Atkinson—Westwick’83,  
• Derksen—Makam’17

• Skew symmetric 
matrices of odd size

1.  What else lies here? 

2. How do we solve SDIT 

for these?

Linear Kernels





See Avi’s talk at IAS titled “Linear Spaces of matrices” for more connections and background





Goal - To find more examples and 
solve SDIT for them
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Result 2 - Algorithm

   Singular Matrix Spaces

Shrunk 
Subspaces

Linear Kernels • Isolated Examples 
• AW’83, DM’17

• Singularity testing in 
deterministic polynomial 
time

“Non-trivial” 
Matrix Lie 

algebras over ℂ



Lie Algebras
Vector Spaces with a bracket 
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Matrix Lie algebras
● A linear subspace of  matrices over a field  is a matrix Lie 

algebra if it is closed under the commutator .
n × n 𝔽

[A, B] := AB − BA

● Examples -
○  matrices over .𝔤𝔩(𝔽n) := n × n 𝔽
○ . 𝔰𝔩n := {A | tr(A) = 0}
○ .𝔰𝔬n := {A | A + AT = 0}

● A matrix Lie algebra  is irreducible if for every subspace 
 we have .

𝒜
U ≠ {0}, 𝔽n 𝒜U ⊈ U
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Theorem 1 - No shrunk subspaces

● Theorem 1 - Every non-zero irreducible matrix Lie algebra 
over  has no shrunk subspaces.ℂ

● Main idea is to prove it by showing that existence of 
shrunk subspaces contradicts irreducibility.

● This result also obtained independently by Makam-
Derksen.
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Lie group <—> Lie algebra
● Lie group - Group that is also a 

manifold.

● Lie algebras  over   <-> Tangent 
spaces of a Lie groups .

● Denoted as .
○ Eg - 

𝔤 ℂ
G

Lie(G) = 𝔤
Lie(SLn) = 𝔰𝔩n

Timothy Budd, adapted from  
Illustrating Geometry - Keenan
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Proof Sketch

● Idea 1 - Show invariance under  by using its Lie group. 𝒜
○ Lemma - If a subspace is invariant under , it is invariant 

under . 
G

Lie(G)

● Lemma  - If  is nc-singular, there exists a canonical 
subspace that is invariant under any  such that  stabilizes 

, i.e.,   . 

𝒜
X X

𝒜 X𝒜X−1 = 𝒜
○ Fact -  stabilizes . G Lie(G)
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General version via composition factors 

● For every , there exists a composition series consisting 
of a finite set of irreducible matrix Lie algebras each called 
a composition factor of . 

𝒜

𝒜

● Theorem 1 - Let  be a matrix Lie algebra over  such 
that none of the composition factors are zero. Then,  
does not have shrunk subspaces.

𝒜 ℂ
𝒜
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Theorem 2

● Theorem 2 - Let  be a semi-simple Lie algebra over  
and  be an irreducible representation of . Then,  

 admits a linear kernel if and only if 

𝔤 ℂ
ρ 𝔤

𝒜 = ρ(𝔤)

○  or .ρ = 0 ρ ≅ ad

Note - Here we assume (wlog) that  is faithful and the statement is true for any algebraically closed field F over 
characteristic not 2 or 3. 

ρ
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How do we build matrix Lie algebras?
● Abstract Lie algebras - A vector space  with a bilinear map 

 that satisfies -  
𝔤

[ ⋅ , ⋅ ] : 𝔤 × 𝔤 → 𝔤
○  and thus .[x, y] = − [y, x] [x, x] = 0
○ Jacobi identity. 

● Can build matrix lie algebras via a map  such 
that .

ρ : 𝔤 → 𝔤𝔩(V )
ρ[x, y] = [ρ(x), ρ(y)]

○ The image of  is a matrix Lie algebra! ρ
○ The pair  is called a representation of .(ρ, V ) 𝔤
○ If  is a matrix Lie algebra, can take .  𝔤 ρ = id
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Theorem 2 - No linear kernel

● Theorem 2 - Let  be a semi-simple Lie algebra over  
and  be an irreducible representation of . Then,  

 admits a linear kernel if and only if 

𝔤 ℂ
ρ 𝔤

𝒜 = ρ(𝔤)

○  or .ρ = 0 ρ ≅ ad
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Two proofs of Theorem 2

Density

• Every semi-simple lie algebra can be 
generated by two elements.

Chevalley Basis

• Every semi-simple Lie algebra 
has a root structure and 
admits a Chevalley basis.
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Theorem 3 - Algorithm

● Theorem 3 - Given as input, , a matrix Lie algebra over 
 there is a deterministic polynomial time algorithm to test 

if  is singular.

𝒜
ℂ

𝒜

● Simple fact - SDIT for an upper-triangular space is PIT for 
product of linear forms, i.e., depth-2 circuit (easy) :) 
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Cartan Subalgebra

● For every matrix algebra, , there exists a subalgebra  
such that 

𝒜 𝔥 ≤ 𝒜

○   is singular iff  is. 𝔥 𝒜
○  There exists a  such that  is upper-triangular.T T𝔥T−1

● de Graaf, Ivanyos, Rónyai ’96 gave a deterministic algorithm to 
compute such a .𝔥
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Summary
● We prove that representations of Lie algebras, i.e., matrix Lie 

algebras provide examples of singular spaces without shrunk 
subspaces i.e. with full non-commutative rank.

● We also show that such spaces do not posses a simple 
certificate in the form of linear kernels. (ruling out certain brute-
force linear algebraic algorithms) 

● We give a deterministic algorithm to decide singularity of such 
spaces.
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● Extend the result to Lie algebras over other fields.
● Can the algorithm be made black-box?
● Find more examples!

Thank you!

● Glad to hear your feedback/questions - tushant@uchicago.edu.


