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Error-Correcting Codes

● Code -  Redundant way of storing information to enable error-correction.
●  Say, maps k-bits/qubits to n-bits/qubits. 

● (Efficiency) Rate = k/n  
● (Error-correctability) Distance  d = min |c − c′￼|

● Good codes - Infinite family   such that {Cn} k, d = Θ(n)
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✓Sipser, Spielman ‘96

Stabilizer

CSS

LDPC

✓Calderbank,Shor 
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✓Steane ‘96

✓Panteleev,Kalachev 
5 Nov 2021 !!!
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Graphs are easier to build
● Linear Codes - 

○ LDPC 

● Codes from graphs -  Gallager’63 - given a graph ,G = (E, V )

● Expansion trick - Sipser-Spielman’96 - If G is an expander, then 
the resulting code is good !!
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Chain Complex Perspective

● Linear Codes -  

● CSS Codes -  

● Parameters - 
○  k = dim(ker(∂1)) − dim(im(∂2))

○ d(𝒞) = min |v | , v ∈ ker(∂1)∖im(∂2)

○ d = min(d(𝒞), d(𝒞*))
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How do we construct 2-
complexes?

Topology

• Graphs    1-complex⟶

• Topological objects   n-complex⟶

• Torus  Kitaev’s Toric Code⟶

Products

• Mash together existing 
complexes!

• Key technique - Tensor product
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Tensor Product

● Given complexes, ,  the tensor product is 
. 

𝒞, 𝒟
(𝒞 ⊗ 𝒟)k = ⊕k

i=1 Ci ⊗ Dk−i

● The boundary map is .∂ = ∂C ⊗ id + id ⊗ ∂D

● If   are 1-complexes then   is a 2-complex,𝒞, 𝒟 𝒞 ⊗ 𝒟
○  𝒞 ⊗ 𝒟 = C1D1 → C1D0 ⊕ C0D1 → C0D0
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● Zeng, Pryadko ’19 

● Classical  Classical - ⊗ (n, d) ⊗ (n′￼, d′￼) → (nn′￼, d′￼, d)
○ Tillich, Zémor ’15 - 

● Quantum  Classical - ⊗ (n, dx, dz) ⊗ (n′￼, d′￼) → (nn′￼, dxd′￼, dz)
○ Evra, Kaufman, Zémor ’20 - 
○ Kaufman, Tessler ’20
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Topology
Use cohomology 
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TZ’15,EKZ’20, KT’20
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Symmetry
If you can’t increase , decrease  d n

2b.



How can symmetry help?

● Let . It has 
relative distance .


● Let  and . 

○  acts on  such that  permutes first two coordinates 

and  permutes the other two.


● Quotient is the image of the projection   where 
.


○  has relative distance 1.

𝒞 = span ((1,0,1,0), (0,1,0,1)) ⊆ V = 𝔽4
2

2/4 = 1/2

H = ℤ2 × ℤ2 (σ1, σ2) ∈ H
H V σ1

σ2

φ : V → V/H
φ(a, b, c, d) = (a + b, c + d)

φ(𝒞) = 𝒞/H = span((1,1))
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Results

● Hastings, Haah, O’Donnell ’20 - 


● Panteleev, Kalachev ’20  -   


● Breuckmann, Eberhardt ’20 - 


● Panteleev, Kalachev ’21 - 



Improvements in distance

Topology
Use cohomology 

theories on manifolds 

Expansion
Take tensor 
products of 
expanders 

 to N N logk N

Symmetry
Use group symmetry 

to quotient

TZ’15,EKZ’20, KT’20

  to  N0.6 NUp to N log1/4 N

HHO’20,PK’20, 
BE’20, PK’21
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Open Problems

● Explicit construction of symmetric expanding complexes
○ Jeronimo, M, O’Donnell, Paredes, Tulsiani gave a construction for 

abelian groups and 1-complexes. 

● Decoding algorithms for quantum LDPC codes.

● Quantum Locally Testable Codes - Applications to NLTS, qPCP 
conjecture.

Thank you!


