Quantum codes from classical tools: A survey

Tushant Mittal

 Madhur - For advising etc.. but also for making it to the presentation despite adverse circumstances.

 Madhur - For advising etc.. but also for making it to the presentation despite adverse circumstances.

- Madhur For advising etc.. but also for making it to the presentation despite adverse circumstances.
- Bill, Janos For being on the committee!

- Madhur For advising etc.. but also for making it to the presentation despite adverse circumstances.
- Bill, Janos For being on the committee!

- Madhur For advising etc.. but also for making it to the presentation despite adverse circumstances.
- Bill, Janos For being on the committee!
- Aravind, Jafar, Kunal and Lavanya For honest and very helpful feedback on the talk

- Madhur For advising etc.. but also for making it to the presentation despite adverse circumstances.
- Bill, Janos For being on the committee!
- Aravind, Jafar, Kunal and Lavanya For honest and very helpful feedback on the talk
 - "Not the worst talk I've seen"- One of them.

OUTLINE

 Overview and the classical world

2. The Quantum WorldGeneralizing to quantum

Tensor Product

2a. De

Definition and tensor product based constructions

2b. Symmetry Using symmetry to boost parameters փիփերի կեղուկիսի իկինեն երկինեն իկինելինեն երկիներ իկիներիին անվիրների

1.

Introduction

Overview Classical Construction

++(++ ++(+++)) +(++++))++ ++(+++)++ ++(+++)(++++)

Classical

Classical

100011110 (k-bits)

> ++(#+ ++(#++(#) #(++#)++ ##)++ #(#++(#)

Classical

100011110 (k-bits)

Classical

+\(\+ (+(++)) +(+++)) +(+++)) +(+++))

Classical

Classical

ﻪ**ﻧﯘﺭﻩ** (ﻣﯘﺷﺪﯾﯘﺭ) ﺋﯘﺭﻩﺑﯘﯞﻩ ﻣﯘﯞﻩ ﺩﻩ₫ﯘﺩﻩﺋﯘﺭ)

ﻪ**ﻧﯘﺭﻩ** (ﻣﯘﺷﺪﯾﯘﺭ) ﺋﯘﺭﻩﺑﯘﯞﻩ ﻣﯘﯞﻩ ﺩﻩ₫ﯘﺩﻩﺋﯘﺭ)

• Code - Redundant way of storing information to enable error-correction.

- Code Redundant way of storing information to enable error-correction.
 - Say, maps k-bits/qubits to n-bits/qubits.

- Code Redundant way of storing information to enable error-correction.
 - Say, maps k-bits/qubits to n-bits/qubits.

- Code Redundant way of storing information to enable error-correction.
 - Say, maps k-bits/qubits to n-bits/qubits.
- (Efficiency) Rate = k/n

- Code Redundant way of storing information to enable error-correction.
 - Say, maps k-bits/qubits to n-bits/qubits.
- (Efficiency) Rate = k/n
- (Error-correctability) Distance $d = \min |c c'|$

+1444 (+444); +4444 +4444 +4444

- Code Redundant way of storing information to enable error-correction.
 - Say, maps k-bits/qubits to n-bits/qubits.
- (Efficiency) Rate = k/n
- (Error-correctability) Distance $d = \min |c c'|$

+1444 (+444); +4444 +4444 +4444

- Code Redundant way of storing information to enable error-correction.
 - Say, maps k-bits/qubits to n-bits/qubits.
- (Efficiency) Rate = k/n
- (Error-correctability) Distance $d = \min |c c'|$
- Good codes Infinite family $\{C_n\}$ such that $k, d = \Theta(n)$

madda aaddaaadd hijteaddaa iddaaa aabaadda

sodda aaddooddu offsoddoo addoo aaddaa

estin addiesedi tipesides states tipesides

madda aaddaaadd hijteaddaa iddaaa aabaadda

estin addestin theodor addes detbards

esida eeddosid: Diesids: Inipes eeddo: Inipes

Goal - To build good quantum codes

ւենվվանեց վանդիկիանի մակիս մակիսնակի ու ուկիսնակիսնակի սիիանվինն ակիսն հիրնու

1a.

The Classical World

Codes from expanding graphs

• Linear Codes -

Linear Codes LDPC

Linear Codes LDPC

- Linear Codes LDPC
- Codes from graphs Gallager'63 given a graph G = (E, V),

- Linear Codes LDPC
- Codes from graphs Gallager'63 given a graph G = (E, V),

- Linear Codes LDPC
- Codes from graphs Gallager'63 given a graph G = (E, V),

- Linear Codes LDPC
- Codes from graphs Gallager'63 given a graph G = (E, V),

- Linear Codes LDPC
- Codes from graphs Gallager'63 given a graph G = (E, V),

 Expansion trick - Sipser-Spielman'96 - If G is an expander, then the resulting code is good !! տակիստող վետումիստոկիս իկիստումիստումի իստովվեստումին իկիստովիստութին անվերութ

2.

The Quantum World

Linear Codes -

Linear Codes -

- Linear Codes -
- CSS Codes -

ﻪﻧﻮﻧﻐﻪ «ﺧﻮﻧﻐﻮﻧﺪ) ﺧﻮﻧﺪﻩﻧﺪﻩ (ﺧﻮﻧﻐﻪﺭ): ﻣﻪﻟﻪ:

- Linear Codes -
- CSS Codes -

ﻪﻧﻮﻧﻐﻪ «ﺧﻮﻧﻐﻮﻧﺪ) ﺧﻮﻧﺪﻩﻧﺪﻩ (ﺧﻮﻧﻐﻪﺭ): ﻣﻪﻟﻪ:

- Linear Codes -
- CSS Codes -
- Parameters -

ﻪﻧﯘﯞﻩ «ﺧﯘﯞﻩﺩﯞן ﺋﯘﺧﻪﯞﻩ، ﻣﯘﺩﻩﯞן (ﺧﯘﯞﻩﺩﯞן:

- Linear Codes -
- CSS Codes -
- Parameters *k* = dim(ker(∂₁)) dim(im(∂₂))

- Linear Codes -
- CSS Codes -
- Parameters -• $k = \dim(\ker(\partial_1)) - \dim(\operatorname{im}(\partial_2))$
 - $o \ d(\mathscr{C}) = \min |v|, \ v \in \ker(\partial_1) \setminus \operatorname{im}(\partial_2)$

- Linear Codes -
- CSS Codes -
- Parameters -• $k = \dim(\ker(\partial_1)) - \dim(\operatorname{im}(\partial_2))$
 - $o \ d(\mathscr{C}) = \min |v|, \ v \in \ker(\partial_1) \setminus \operatorname{im}(\partial_2)$

- Linear Codes -
- CSS Codes -
- Parameters k = dim(ker(∂₁)) dim(im(∂₂))
 - $o \ d(\mathscr{C}) = \min |v|, \ v \in \ker(\partial_1) \setminus \operatorname{im}(\partial_2)$
 - $\circ \ d = \min(d(\mathscr{C}), d(\mathscr{C}^*))$

+144 (+144); 44+14514 |4514 |4514 (+144);

Topology

Topology

• Graphs \longrightarrow 1-complex

• Graphs \longrightarrow 1-complex

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex

Topology

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex
- Torus \longrightarrow Kitaev's Toric Code

Topology

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex
- Torus \longrightarrow Kitaev's Toric Code

Topology

Products

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex
- Torus → Kitaev's Toric Code

Topology

Products

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex
- Torus → Kitaev's Toric Code

Topology

Products

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex
- Torus → Kitaev's Toric Code

Mash together existing complexes!

Topology

Products

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex
- Torus → Kitaev's Toric Code

Mash together existing complexes!

Topology

Products

- Graphs \longrightarrow 1-complex
- Topological objects \longrightarrow n-complex
- Torus → Kitaev's Toric Code

complexes!

Mash together existing

Key technique - Tensor product

Improvements in distance

esider aaddesid: shiresides selies aabaadd: փիփոփիկելու կողովիկուս դիկելու ուղվերկություն դիկելու ուղվերկություն դիկելու ուղվերերին ուղվեր

2a.

Tensor Product

Definition Key Lemma

++(++ +++)++ +(++++)++ ++++++ +(++++)++ +(++++)+

• Given complexes, \mathscr{C}, \mathscr{D} , the tensor product is $(\mathscr{C} \otimes \mathscr{D})_k = \bigoplus_{i=1}^k C_i \otimes D_{k-i}$.

• Given complexes, \mathscr{C}, \mathscr{D} , the tensor product is $(\mathscr{C} \otimes \mathscr{D})_k = \bigoplus_{i=1}^k C_i \otimes D_{k-i}$.

- Given complexes, \mathscr{C}, \mathscr{D} , the tensor product is $(\mathscr{C} \otimes \mathscr{D})_k = \bigoplus_{i=1}^k C_i \otimes D_{k-i}$.
- The boundary map is $\partial = \partial_C \otimes \operatorname{id} + \operatorname{id} \otimes \partial_D$.

- Given complexes, \mathscr{C}, \mathscr{D} , the tensor product is $(\mathscr{C} \otimes \mathscr{D})_k = \bigoplus_{i=1}^k C_i \otimes D_{k-i}$.
- The boundary map is $\partial = \partial_C \otimes \operatorname{id} + \operatorname{id} \otimes \partial_D$.

- Given complexes, \mathscr{C}, \mathscr{D} , the tensor product is $(\mathscr{C} \otimes \mathscr{D})_k = \bigoplus_{i=1}^k C_i \otimes D_{k-i}$.
- The boundary map is $\partial = \partial_C \otimes \operatorname{id} + \operatorname{id} \otimes \partial_D$.
- If \mathscr{C}, \mathscr{D} are 1-complexes then $\mathscr{C} \otimes \mathscr{D}$ is a 2-complex,

- Given complexes, \mathscr{C}, \mathscr{D} , the tensor product is $(\mathscr{C} \otimes \mathscr{D})_k = \bigoplus_{i=1}^k C_i \otimes D_{k-i}$.
- The boundary map is $\partial = \partial_C \otimes \operatorname{id} + \operatorname{id} \otimes \partial_D$.
- If \mathscr{C}, \mathscr{D} are 1-complexes then $\mathscr{C} \otimes \mathscr{D}$ is a 2-complex, $\circ \ \mathscr{C} \otimes \mathscr{D} = C_1 D_1 \to C_1 D_0 \oplus C_0 D_1 \to C_0 D_0$

+14)\$14 (44)\$(44)\$(1 \$144)\$16 14(1) 44(44){16 14(1)}

+\def()= (+d()(+d)) ((++)))= (+))= +((+(d))

• Zeng, Pryadko '19

+\dj#1 (+d#(+)); ##+##[>+ ##); +#[#+##];

• Zeng, Pryadko '19

+\dj#1 (+d#(+)); ##+##[>+ ##); +#[#+##];

• Zeng, Pryadko '19

• Classical \otimes Classical - $(n, d) \otimes (n', d') \rightarrow (nn', d', d)$

- Zeng, Pryadko '19
- Classical \otimes Classical $(n, d) \otimes (n', d') \rightarrow (nn', d', d)$
 - Tillich, Zémor '15 -

- Zeng, Pryadko '19
- Classical \otimes Classical $(n, d) \otimes (n', d') \rightarrow (nn', d', d)$
 - Tillich, Zémor '15 -

- Zeng, Pryadko '19
- Classical \otimes Classical $(n, d) \otimes (n', d') \rightarrow (nn', d', d)$
 - Tillich, Zémor '15 -
- Quantum \bigotimes Classical $(n, d_x, d_z) \otimes (n', d') \rightarrow (nn', d_xd', d_z)$

- Zeng, Pryadko '19
- Classical \otimes Classical $(n, d) \otimes (n', d') \rightarrow (nn', d', d)$
 - Tillich, Zémor '15 -
- Quantum \bigotimes Classical $(n, d_x, d_z) \otimes (n', d') \rightarrow (nn', d_x d', d_z)$
 - Evra, Kaufman, Zémor '20 -

- Zeng, Pryadko '19
- Classical \otimes Classical $(n, d) \otimes (n', d') \rightarrow (nn', d', d)$
 - Tillich, Zémor '15 -
- Quantum \bigotimes Classical $(n, d_x, d_z) \otimes (n', d') \rightarrow (nn', d_xd', d_z)$
 - Evra, Kaufman, Zémor '20 -
 - Kaufman, Tessler '20

Improvements in distance

oodda aaddoodda ibhoodda idhboo aabhaadda իկտովիուդ հանգին իկտովիում իկտովիում իկտովիում ոսկիում

2b.

Symmetry

If you can't increase d, decrease n

How can symmetry help?

- Let $\mathscr{C} = \operatorname{span} ((1,0,1,0), (0,1,0,1)) \subseteq V = \mathbb{F}_2^4$. It has relative distance 2/4 = 1/2.
- Let H = Z₂ × Z₂ and (σ₁, σ₂) ∈ H.
 H acts on V such that σ₁ permutes first two coordinates and σ₂ permutes the other two.
- Quotient is the image of the projection $\varphi : V \to V/H$ where $\varphi(a, b, c, d) = (a + b, c + d)$. • $\varphi(\mathscr{C}) = \mathscr{C}/H = \operatorname{span}((1,1))$ has relative distance 1.

Results

ﻪ**ﻧﯘﻩ ﺩﻩﯞ**ﻩﺩﻩﯞ; \$\$\$\$\$\$ \$\$\$\$\$\$ \$\$\$\$\$\$

Results

- Hastings, Haah, O'Donnell '20 -
- Panteleev, Kalachev '20 -
- Breuckmann, Eberhardt '20 -
- Panteleev, Kalachev '21 -

Improvements in distance

Open Problems

Open Problems

• Explicit construction of symmetric expanding complexes
Explicit construction of symmetric expanding complexes
 Jeronimo, M, O'Donnell, Paredes, Tulsiani gave a construction for abelian groups and 1-complexes.

 Explicit construction of symmetric expanding complexes
 Jeronimo, M, O'Donnell, Paredes, Tulsiani gave a construction for abelian groups and 1-complexes.

- Explicit construction of symmetric expanding complexes
 Jeronimo, M, O'Donnell, Paredes, Tulsiani gave a construction for abelian groups and 1-complexes.
- Decoding algorithms for quantum LDPC codes.

- Explicit construction of symmetric expanding complexes
 Jeronimo, M, O'Donnell, Paredes, Tulsiani gave a construction for abelian groups and 1-complexes.
- Decoding algorithms for quantum LDPC codes.

- Explicit construction of symmetric expanding complexes
 Jeronimo, M, O'Donnell, Paredes, Tulsiani gave a construction for abelian groups and 1-complexes.
- Decoding algorithms for quantum LDPC codes.
- Quantum Locally Testable Codes Applications to NLTS, qPCP conjecture.

- Explicit construction of symmetric expanding complexes
 Jeronimo, M, O'Donnell, Paredes, Tulsiani gave a construction for abelian groups and 1-complexes.
- Decoding algorithms for quantum LDPC codes.
- Quantum Locally Testable Codes Applications to NLTS, qPCP conjecture.

