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● Main goal is to explicitly build 
symmetric expanding graphs


● Let us see why and how!

Image credits - Hoory, Linial, Wigderson ‘06
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• Spectral notion - .λ(G) = max ( λ2(AG), |λn(AG) | )
• The smaller  is, the better the expander.λ(G)
• The complete graph has .λ(Kn) = 1
• If  is d-regular and disconnected, .G λ(G) = d

User ‘rhermans’ on Mathematica.SE

• Q - Given , can we construct infinite families of d-regular graphs  with 
 such that  ?


• Alon-Boppanna bound says that the best possible is .

d, ε {Gn}
n → ∞ λ(Gn) ≤ εd

2 d − 1 − on(1)

https://mathematica.stackexchange.com/users/10397/rhermans
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• Eg - If , we have the cycle graph  such that 

•   as .

H = ℤ6 C6
ℤ6 ⊆ Aut(C6) i : n → n + i mod 6
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Two nice graph properties

Expansion

• Many explicit constructions of constant 
degree expander graphs known.

Symmetry

• [Babai’74] For any finite group H, there 
exists an explicit graph X with 

.Aut(X ) = H

Q - Can we have both ?
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● Given linear codes -  each with the symmetry of a group , one can 

define a quantum CSS code -  .
C1, C2 H

C1 ⊗H C2

●  - [Hastings, Haah and O’Donnell ’20], [Panteleev, Kalachev ’20].ℤℓ

●  - [Panteleev, Kalachev’21], [Dinur, Evra, Livne, Lubotzky, Mozes’21].𝖯𝖲𝖫2(𝔽q)

● Property Testing - Interesting work by [Goldreich-Wigderson’21] builds expander 
graphs with  and shows applications to property testing.Aut(X ) = {id}
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Q - For a given family of groups , can 
we explicitly construct a family of expander 

graphs  such that   ?

Hn

Gn Hn ⊆ Aut(Gn)
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● Algebraic Constructions -  Specific constructions for certain groups like  but 
are highly non-elementary.

𝖯𝖲𝖫𝔽

● Random Cayley Graphs -  [Alon-Roichman’01] - For a random , such that
,  is an expanding graph.

S ⊆ H
|S | = Θ(log |H | ) Cay(H, S)
● The degree is logarithmic and the bound is tight when  is abelian.H

● Group-based lifts (Covering maps) - A generic technique introduced by Bilu, Linial’06  
in context of graphs.  A special case of the topological notion of covering maps. 
● Used extensively to construct expanders. 
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Example (revisited)

1

2

3

4

5

6

Can this cycle graph be seen 

as a lift of a smaller graph?

1

23

1

(2,1) ~ 2(3,1) ~ 3

(1,2) ~ 4

(2,2) ~5(3,2) ~ 6

id

id

-1

-lift(ℤ2,2)



Properties of lifting

● Explicit characterization of the spectrum of lifted graph, . 


● Preserves degree.


● If  is abelian, it possesses symmetries of  i.e.,


● .


● If  is an expander and  is random,  is known to be an 

expander*. Challenge is to explicitly construct such a signing .

G(s)

H H
H ⊆ Aut(G(s))

G s G(s)
s



Quick history of lifting
Technique Authors Lift Explicit

Discrepancy
[Bilu, Linial ’06] 2-lift Yes

[Agrawal, Chandrashekharan, Kolla, 
Madan ’16] No

Method of 
interlacing 

polynomials

[Marcus, Spielman, Srivastava ’13]

[Cohen ’16] 2-lift Yes

[Hall, Puder, Sawin ’15] for some 
non-abelian

No?

Trace Power 
Method [Mohanty, O’Donnell, Paredes ’20] 2-lift Yes

λ(G)

(ℤℓ, ℓ)

d log1.5 d

O( d )

2 d − 1 + ε

2 d − 1(H, ℓ)
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Can we lift more?
● [ACKM’16] showed that for , 

there exists good signings for 
.


○ They further show that for any 
abelian group , no lift of size 

 is expanding.


● The goal now is to construct 
 lifts for . 

ℤℓ

ℓ ≤ 2n/d3

H
ℓ > exp(nd)

(ℤℓ, ℓ) 3 ≤ ℓ ≤ 2nd



Our Results
Yes, we do lift!


And that too explicitly!


2.
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Main Result (Simplified)

Theorem - For any , large enough  and “nice” , we have 
an explicit family of -regular expanding graphs  such that 

 is a -lift* of some base graph.

d ≥ 3 n ℓ(n)
d {Gn}

Gn (ℤℓ(n), ℓ(n))

exp (n0.01) exp (Θ(n))2

Impossible -> [ACKM’16]
ℓ(n)

* The result can be generalized from   to any transitive abelian subgroup of ℤℓ Sym(ℓ)



Technique Authors Lift Explicit

Discrepancy

[BL06] Yes

[ACKM16] No

This work Yes

Trace Power 
Method

[MOP20] Yes

This work Yes

λ(G)

2 d − 1 + ε

(ℤℓ, ℓ) ℓ ≤ exp(nδ(d,ε)) 2 d − 1 + ε

(ℤℓ, ℓ) ℓ ≤ exp(n /d3)

(ℤℓ, ℓ) ℓ ≤ exp(n0.01)

(ℤℓ, ℓ) ℓ = exp(Θ(n)) Õ ( d)

O ( d)
Õ ( d)

εd

(ℤ2, 2)

(ℤ2, 2)

Main Result 
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vertices such that it is a -lift of a graph, one can construct 

d G nℓ
(ℤℓ, ℓ)

○ A good quasi-cyclic linear code with circulant size .ℓ
○ An  quantum LDPC code.[[nℓ, n, ℓ]]
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Application - LDPC Codes
● Corollary - We have explicit polynomial time construction of each of the 

following - 

○ Good quasi-cyclic LDPC code of block length  and any circulant size up 
to  or  

N
N/polylog(N ) Θ(N/ log(N )) .

○ Quantum LDPC code with distance  and dimension 
.  

Ω(N/ log(N ))
Ω(log(N ))

○ Quantum LDPC code with distance  and dimension  for 
every constant . 

Ω(N1−α) Θ(Nα)
0 < α < 1



Key Contribution
A better count of non-backtracking hikes
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Longer hikes are harder!

● The length, , of the walk depends on the size of the lift .2k ℓ

● For 2-lifts, bounding walks of length  suffices which is 
what [MOP20] does and gives a count close to the optimal one.

O(log n)

● We extend the near-optimal bound to walks of length  
and obtain a weaker bound all the way up to  .

O(nδ(d,ε))
k = O(n0.01)
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Counting via DFS
● Define the hike graph to be the subgraph formed by the hike. 

● First, count all possible hike graphs by encoding a DFS traversal.
○ Encoding 1 - At each step store whether it is a backtracking 

step or which of the  neighbors do we recurse to. d

○ If — Most vertices have degree 2. Compress the 
encoding by storing list of vertices of degree .  

k = O (nδ(ε))
> 2

● Then, count the number of hikes corresponding to a given graph.



Conclusion
All good things come to an end 

4.
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Summary

● We give explicit constructions of -lifted graphs for abelian 
 and a large range of lift sizes .

(H, ℓ)
H ℓ

● Main method of analysis is trace power method utilizing a careful 
count of special walks on a large girth graph.

● As an application, we get new explicit LDPC codes — classical 
and quantum.
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Open Problems

● Extend the almost-Ramanujan bound to the entire range of lift-
sizes, possibly with a unified proof technique.

● Can we give strongly explicit constructions?

● Generalize the result to new families of non-abelian groups.
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Thank you!

● Glad to hear your feedback/questions - tushant@uchicago.edu 

● Fernando gave a (much) longer talk on the topic at IAS.
○ Check it out on Youtube! 


