
Explicit Abelian Lifts and
Quantum LDPC Codes

Fernando G. Jeronimo, Tushant Mittal, Ryan O’Donnell,
Pedro Paredes, Madhur Tulsiani

ITCS 2022

● Main goal is to explicitly build
symmetric expanding graphs

● Let us see why and how!

Image credits - Hoory, Linial, Wigderson ‘06

OUTLINE

Key Contribution

A better count via DFS! 3.
Conclusion
Summary and open
Problems

4.

Introduction

Motivation and history1.
Our Results
Statement and an
application

2.

Introduction
Here we go!

1.

Expansion

Expansion
• A notion that captures how well-connected a graph is.

Expansion
• A notion that captures how well-connected a graph is.

Expansion
• A notion that captures how well-connected a graph is.

• Spectral notion - .λ(G) = max (λ2(AG), |λn(AG) |)

Expansion
• A notion that captures how well-connected a graph is.

• Spectral notion - .λ(G) = max (λ2(AG), |λn(AG) |)
• The smaller is, the better the expander.λ(G)

Expansion
• A notion that captures how well-connected a graph is.

• Spectral notion - .λ(G) = max (λ2(AG), |λn(AG) |)
• The smaller is, the better the expander.λ(G)
• The complete graph has .λ(Kn) = 1

Expansion
• A notion that captures how well-connected a graph is.

• Spectral notion - .λ(G) = max (λ2(AG), |λn(AG) |)
• The smaller is, the better the expander.λ(G)
• The complete graph has .λ(Kn) = 1
• If is d-regular and disconnected, .G λ(G) = d

Expansion
• A notion that captures how well-connected a graph is.

• Spectral notion - .λ(G) = max (λ2(AG), |λn(AG) |)
• The smaller is, the better the expander.λ(G)
• The complete graph has .λ(Kn) = 1
• If is d-regular and disconnected, .G λ(G) = d

User ‘rhermans’ on Mathematica.SE

https://mathematica.stackexchange.com/users/10397/rhermans

Expansion
• A notion that captures how well-connected a graph is.

• Spectral notion - .λ(G) = max (λ2(AG), |λn(AG) |)
• The smaller is, the better the expander.λ(G)
• The complete graph has .λ(Kn) = 1
• If is d-regular and disconnected, .G λ(G) = d

User ‘rhermans’ on Mathematica.SE

• Q - Given , can we construct infinite families of d-regular graphs with
 such that ?

• Alon-Boppanna bound says that the best possible is .

d, ε {Gn}
n → ∞ λ(Gn) ≤ εd

2 d − 1 − on(1)

https://mathematica.stackexchange.com/users/10397/rhermans

Symmetry

Symmetry

• A graph isomorphism is a bijective map such
that for is an edge iff is.

φ : V(G) → V(G)
(u, v) (φ(u), φ(v))

Symmetry

• A graph isomorphism is a bijective map such
that for is an edge iff is.

φ : V(G) → V(G)
(u, v) (φ(u), φ(v))

Symmetry

• A graph isomorphism is a bijective map such
that for is an edge iff is.

φ : V(G) → V(G)
(u, v) (φ(u), φ(v))

• is the group of all isomorphisms of G.Aut(G)

Symmetry

• A graph isomorphism is a bijective map such
that for is an edge iff is.

φ : V(G) → V(G)
(u, v) (φ(u), φ(v))

• is the group of all isomorphisms of G.Aut(G)

Symmetry

• A graph isomorphism is a bijective map such
that for is an edge iff is.

φ : V(G) → V(G)
(u, v) (φ(u), φ(v))

• is the group of all isomorphisms of G.Aut(G)

• Q - Given , can we construct graphs such that ?H H ⊆ Aut(G)

Symmetry

• A graph isomorphism is a bijective map such
that for is an edge iff is.

φ : V(G) → V(G)
(u, v) (φ(u), φ(v))

• is the group of all isomorphisms of G.Aut(G)

• Q - Given , can we construct graphs such that ?H H ⊆ Aut(G)

1

2

3

4

5

6

Symmetry

• A graph isomorphism is a bijective map such
that for is an edge iff is.

φ : V(G) → V(G)
(u, v) (φ(u), φ(v))

• is the group of all isomorphisms of G.Aut(G)

• Q - Given , can we construct graphs such that ?H H ⊆ Aut(G)

1

2

3

4

5

6

• Eg - If , we have the cycle graph such that

• as .

H = ℤ6 C6
ℤ6 ⊆ Aut(C6) i : n → n + i mod 6

Two nice graph properties

Two nice graph properties

Two nice graph properties

Expansion

Two nice graph properties

Expansion

Two nice graph properties

Expansion

• Many explicit constructions of constant
degree expander graphs known.

Two nice graph properties

Expansion

• Many explicit constructions of constant
degree expander graphs known.

Two nice graph properties

Expansion

• Many explicit constructions of constant
degree expander graphs known.

Symmetry

Two nice graph properties

Expansion

• Many explicit constructions of constant
degree expander graphs known.

Symmetry

Two nice graph properties

Expansion

• Many explicit constructions of constant
degree expander graphs known.

Symmetry

• [Babai’74] For any finite group H, there
exists an explicit graph X with

.Aut(X) = H

Two nice graph properties

Expansion

• Many explicit constructions of constant
degree expander graphs known.

Symmetry

• [Babai’74] For any finite group H, there
exists an explicit graph X with

.Aut(X) = H

Q - Can we have both ?

2

● Good Quantum LDPC codes and Locally testable codes -

2

● Good Quantum LDPC codes and Locally testable codes -
● Given linear codes - each with the symmetry of a group , one can

define a quantum CSS code - .
C1, C2 H

C1 ⊗H C2

2

● Good Quantum LDPC codes and Locally testable codes -
● Given linear codes - each with the symmetry of a group , one can

define a quantum CSS code - .
C1, C2 H

C1 ⊗H C2

2

● Good Quantum LDPC codes and Locally testable codes -
● Given linear codes - each with the symmetry of a group , one can

define a quantum CSS code - .
C1, C2 H

C1 ⊗H C2

● - [Hastings, Haah and O’Donnell ’20], [Panteleev, Kalachev ’20].ℤℓ

2

● Good Quantum LDPC codes and Locally testable codes -
● Given linear codes - each with the symmetry of a group , one can

define a quantum CSS code - .
C1, C2 H

C1 ⊗H C2

● - [Hastings, Haah and O’Donnell ’20], [Panteleev, Kalachev ’20].ℤℓ

2

● Good Quantum LDPC codes and Locally testable codes -
● Given linear codes - each with the symmetry of a group , one can

define a quantum CSS code - .
C1, C2 H

C1 ⊗H C2

● - [Hastings, Haah and O’Donnell ’20], [Panteleev, Kalachev ’20].ℤℓ

● - [Panteleev, Kalachev’21], [Dinur, Evra, Livne, Lubotzky, Mozes’21].𝖯𝖲𝖫2(𝔽q)

2

● Good Quantum LDPC codes and Locally testable codes -
● Given linear codes - each with the symmetry of a group , one can

define a quantum CSS code - .
C1, C2 H

C1 ⊗H C2

● - [Hastings, Haah and O’Donnell ’20], [Panteleev, Kalachev ’20].ℤℓ

● - [Panteleev, Kalachev’21], [Dinur, Evra, Livne, Lubotzky, Mozes’21].𝖯𝖲𝖫2(𝔽q)

2

● Good Quantum LDPC codes and Locally testable codes -
● Given linear codes - each with the symmetry of a group , one can

define a quantum CSS code - .
C1, C2 H

C1 ⊗H C2

● - [Hastings, Haah and O’Donnell ’20], [Panteleev, Kalachev ’20].ℤℓ

● - [Panteleev, Kalachev’21], [Dinur, Evra, Livne, Lubotzky, Mozes’21].𝖯𝖲𝖫2(𝔽q)

● Property Testing - Interesting work by [Goldreich-Wigderson’21] builds expander
graphs with and shows applications to property testing.Aut(X) = {id}

2

Q - For a given family of groups , can
we explicitly construct a family of expander

graphs such that ?

Hn

Gn Hn ⊆ Aut(Gn)

Known Techniques

Known Techniques

● Algebraic Constructions - Specific constructions for certain groups like but
are highly non-elementary.

𝖯𝖲𝖫2(𝔽q)

Known Techniques

● Algebraic Constructions - Specific constructions for certain groups like but
are highly non-elementary.

𝖯𝖲𝖫𝔽

Known Techniques

● Algebraic Constructions - Specific constructions for certain groups like but
are highly non-elementary.

𝖯𝖲𝖫𝔽

● Random Cayley Graphs - [Alon-Roichman’01] - For a random , such that
, is an expanding graph.

S ⊆ H
|S | = Θ(log |H |) Cay(H, S)

Known Techniques

● Algebraic Constructions - Specific constructions for certain groups like but
are highly non-elementary.

𝖯𝖲𝖫𝔽

● Random Cayley Graphs - [Alon-Roichman’01] - For a random , such that
, is an expanding graph.

S ⊆ H
|S | = Θ(log |H |) Cay(H, S)
● The degree is logarithmic and the bound is tight when is abelian.H

Known Techniques

● Algebraic Constructions - Specific constructions for certain groups like but
are highly non-elementary.

𝖯𝖲𝖫𝔽

● Random Cayley Graphs - [Alon-Roichman’01] - For a random , such that
, is an expanding graph.

S ⊆ H
|S | = Θ(log |H |) Cay(H, S)
● The degree is logarithmic and the bound is tight when is abelian.H

Known Techniques

● Algebraic Constructions - Specific constructions for certain groups like but
are highly non-elementary.

𝖯𝖲𝖫𝔽

● Random Cayley Graphs - [Alon-Roichman’01] - For a random , such that
, is an expanding graph.

S ⊆ H
|S | = Θ(log |H |) Cay(H, S)
● The degree is logarithmic and the bound is tight when is abelian.H

● Group-based lifts (Covering maps) - A generic technique introduced by Bilu, Linial’06
in context of graphs. A special case of the topological notion of covering maps.

Known Techniques

● Algebraic Constructions - Specific constructions for certain groups like but
are highly non-elementary.

𝖯𝖲𝖫𝔽

● Random Cayley Graphs - [Alon-Roichman’01] - For a random , such that
, is an expanding graph.

S ⊆ H
|S | = Θ(log |H |) Cay(H, S)
● The degree is logarithmic and the bound is tight when is abelian.H

● Group-based lifts (Covering maps) - A generic technique introduced by Bilu, Linial’06
in context of graphs. A special case of the topological notion of covering maps.
● Used extensively to construct expanders.

 lift of a graph (H, ℓ)

 lift of a graph (H, ℓ)

G

 lift of a graph (H, ℓ)

G

 lift of a graph (H, ℓ)

G

G(s)

 lift of a graph (H, ℓ)

G

G(s)

 lift of a graph (H, ℓ)

u
G

G(s)

 lift of a graph (H, ℓ)

u
G

G(s)

 lift of a graph (H, ℓ)

u
G

G(s)

 lift of a graph (H, ℓ)

u

(u,1)

G

G(s)

 lift of a graph (H, ℓ)

u

(u,1)
⋮

G

G(s)

 lift of a graph (H, ℓ)

u

(u,1)
⋮

(u, i)

G

G(s)

 lift of a graph (H, ℓ)

u

(u,1)
⋮

(u, i)

⋮

G

G(s)

 lift of a graph (H, ℓ)

u

(u,1)

(u, ℓ)

⋮
(u, i)

⋮

G

G(s)

 lift of a graph (H, ℓ)

u

(u,1)

(u, ℓ)

⋮
(u, i)

⋮

G

G(s)

 lift of a graph (H, ℓ)

u v

(u,1)

(u, ℓ)

⋮
(u, i)

⋮

G

G(s)

 lift of a graph (H, ℓ)

u v

(u,1)

(u, ℓ)

⋮
(u, i)

⋮

G

G(s)

 lift of a graph (H, ℓ)

u v

(u,1) (v,1)

(u, ℓ)

⋮

(v, ℓ)

⋮
(v, s(e) ⋅ i)

(u, i)

⋮ ⋮

G

G(s)

 lift of a graph (H, ℓ)

u v

(u,1) (v,1)

(u, ℓ)

⋮

(v, ℓ)

⋮
(v, s(e) ⋅ i)

(u, i)

⋮ ⋮

G

G(s)

 lift of a graph (H, ℓ)

u v

(u,1) (v,1)

(u, ℓ)

⋮

(v, ℓ)

⋮
(v, s(e) ⋅ i)

(u, i)

⋮ ⋮

Lifting a single edge via a signing
e
s : E → H ⊆ Sym(ℓ)

G

G(s)

 lift of a graph (H, ℓ)

u v

(u,1) (v,1)

(u, ℓ)

⋮

(v, ℓ)

⋮
(v, s(e) ⋅ i)

(u, i)

⋮ ⋮

Lifting a single edge via a signing
e
s : E → H ⊆ Sym(ℓ)

G

G(s)

Example (revisited)

Example (revisited)

1

2

3

4

5

6

Can this cycle graph be seen

as a lift of a smaller graph?

Example (revisited)

1

2

3

4

5

6

Can this cycle graph be seen

as a lift of a smaller graph?

1

23

id

id

-1

Example (revisited)

1

2

3

4

5

6

Can this cycle graph be seen

as a lift of a smaller graph?

1

23

id

id

-1

-lift(ℤ2,2)

Example (revisited)

1

2

3

4

5

6

Can this cycle graph be seen

as a lift of a smaller graph?

1

23

1

(2,1) ~ 2(3,1) ~ 3

(1,2) ~ 4

(2,2) ~5(3,2) ~ 6

id

id

-1

-lift(ℤ2,2)

Properties of lifting

● Explicit characterization of the spectrum of lifted graph, .

● Preserves degree.

● If is abelian, it possesses symmetries of i.e.,

● .

● If is an expander and is random, is known to be an

expander*. Challenge is to explicitly construct such a signing .

G(s)

H H
H ⊆ Aut(G(s))

G s G(s)
s

Quick history of lifting
Technique Authors Lift Explicit

Discrepancy
[Bilu, Linial ’06] 2-lift Yes

[Agrawal, Chandrashekharan, Kolla,
Madan ’16] No

Method of
interlacing

polynomials

[Marcus, Spielman, Srivastava ’13]

[Cohen ’16] 2-lift Yes

[Hall, Puder, Sawin ’15] for some
non-abelian

No?

Trace Power
Method [Mohanty, O’Donnell, Paredes ’20] 2-lift Yes

λ(G)

(ℤℓ, ℓ)

d log1.5 d

O(d)

2 d − 1 + ε

2 d − 1(H, ℓ)

Can we lift more?

Can we lift more?

Can we lift more?
● [ACKM’16] showed that for ,

there exists good signings for
.

○ They further show that for any
abelian group , no lift of size

 is expanding.

● The goal now is to construct
 lifts for . 

ℤℓ

ℓ ≤ 2n/d3

H
ℓ > exp(nd)

(ℤℓ, ℓ) 3 ≤ ℓ ≤ 2nd

Our Results
Yes, we do lift!

And that too explicitly!

2.

Main Result (Simplified)

Main Result (Simplified)

Theorem - For any , large enough and “nice” , we have
an explicit family of -regular expanding graphs such that

 is a -lift* of some base graph.

d ≥ 3 n ℓ(n)
d {Gn}

Gn (ℤℓ(n), ℓ(n))

Main Result (Simplified)

Theorem - For any , large enough and “nice” , we have
an explicit family of -regular expanding graphs such that

 is a -lift* of some base graph.

d ≥ 3 n ℓ(n)
d {Gn}

Gn (ℤℓ(n), ℓ(n))

* The result can be generalized from to any transitive abelian subgroup of ℤℓ Sym(ℓ)

Main Result (Simplified)

Theorem - For any , large enough and “nice” , we have
an explicit family of -regular expanding graphs such that

 is a -lift* of some base graph.

d ≥ 3 n ℓ(n)
d {Gn}

Gn (ℤℓ(n), ℓ(n))

exp (n0.01) exp (Θ(n))2

Impossible -> [ACKM’16]
ℓ(n)

* The result can be generalized from to any transitive abelian subgroup of ℤℓ Sym(ℓ)

Technique Authors Lift Explicit

Discrepancy

[BL06] Yes

[ACKM16] No

This work Yes

Trace Power
Method

[MOP20] Yes

This work Yes

λ(G)

2 d − 1 + ε

(ℤℓ, ℓ) ℓ ≤ exp(nδ(d,ε)) 2 d − 1 + ε

(ℤℓ, ℓ) ℓ ≤ exp(n /d3)

(ℤℓ, ℓ) ℓ ≤ exp(n0.01)

(ℤℓ, ℓ) ℓ = exp(Θ(n)) Õ (d)

O (d)
Õ (d)

εd

(ℤ2, 2)

(ℤ2, 2)

Main Result

Application - LDPC Codes

Application - LDPC Codes

● [Panteleev-Kalachev ’20] Given a -regular graph on
vertices such that it is a -lift of a graph, one can construct

d G nℓ
(ℤℓ, ℓ)

Application - LDPC Codes

● [Panteleev-Kalachev ’20] Given a -regular graph on
vertices such that it is a -lift of a graph, one can construct

d G nℓ
(ℤℓ, ℓ)

Application - LDPC Codes

● [Panteleev-Kalachev ’20] Given a -regular graph on
vertices such that it is a -lift of a graph, one can construct

d G nℓ
(ℤℓ, ℓ)

○ A good quasi-cyclic linear code with circulant size .ℓ

Application - LDPC Codes

● [Panteleev-Kalachev ’20] Given a -regular graph on
vertices such that it is a -lift of a graph, one can construct

d G nℓ
(ℤℓ, ℓ)

○ A good quasi-cyclic linear code with circulant size .ℓ
○ An quantum LDPC code.[[nℓ, n, ℓ]]

Application - LDPC Codes

Application - LDPC Codes
● Corollary - We have explicit polynomial time construction of each of the

following - 

Application - LDPC Codes
● Corollary - We have explicit polynomial time construction of each of the

following - 

○ Good quasi-cyclic LDPC code of block length and any circulant size up
to or  

N
N/polylog(N) Θ(N/ log(N)) .

Application - LDPC Codes
● Corollary - We have explicit polynomial time construction of each of the

following - 

○ Good quasi-cyclic LDPC code of block length and any circulant size up
to or  

N
N/polylog(N) Θ(N/ log(N)) .

○ Quantum LDPC code with distance and dimension
.  

Ω(N/ log(N))
Ω(log(N))

Application - LDPC Codes
● Corollary - We have explicit polynomial time construction of each of the

following - 

○ Good quasi-cyclic LDPC code of block length and any circulant size up
to or  

N
N/polylog(N) Θ(N/ log(N)) .

○ Quantum LDPC code with distance and dimension
.  

Ω(N/ log(N))
Ω(log(N))

○ Quantum LDPC code with distance and dimension for
every constant .

Ω(N1−α) Θ(Nα)
0 < α < 1

Key Contribution
A better count of non-backtracking hikes

3.

Trace Power method

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

3

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

4

3

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

7

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

7

8

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

7

8

9

Trace Power method
● A variation of the method used by [Friedman’02], [Bordenave’19] and

[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

7

10

8

9

Trace Power method

● Trivial Count gives a trivial
eigenvalue bound of .

∼ (d − 1)2k

d

● A variation of the method used by [Friedman’02], [Bordenave’19] and
[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

7

10

8

9

Trace Power method

● Trivial Count gives a trivial
eigenvalue bound of .

∼ (d − 1)2k

d

● A variation of the method used by [Friedman’02], [Bordenave’19] and
[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

7

10

8

9

Trace Power method

● Trivial Count gives a trivial
eigenvalue bound of .

∼ (d − 1)2k

d

● Ideal Count - would give the
optimal bound of .

(d − 1)k

2 d − 1

● A variation of the method used by [Friedman’02], [Bordenave’19] and
[MOP’20]. Define Hikes = singleton-free non-backtracking walks.

●
1
2 λmax(AG)2k ≤ λmax(B)2k ≤ tr((B*)kBk) ≤ Hikes of length 2k .

1

2

5

4

3

6

7

10

8

9

Longer hikes are harder!

Longer hikes are harder!

● The length, , of the walk depends on the size of the lift .2k ℓ

Longer hikes are harder!

● The length, , of the walk depends on the size of the lift .2k ℓ

Longer hikes are harder!

● The length, , of the walk depends on the size of the lift .2k ℓ

● For 2-lifts, bounding walks of length suffices which is
what [MOP20] does and gives a count close to the optimal one.

O(log n)

Longer hikes are harder!

● The length, , of the walk depends on the size of the lift .2k ℓ

● For 2-lifts, bounding walks of length suffices which is
what [MOP20] does and gives a count close to the optimal one.

O(log n)

Longer hikes are harder!

● The length, , of the walk depends on the size of the lift .2k ℓ

● For 2-lifts, bounding walks of length suffices which is
what [MOP20] does and gives a count close to the optimal one.

O(log n)

● We extend the near-optimal bound to walks of length
and obtain a weaker bound all the way up to .

O(nδ(d,ε))
k = O(n0.01)

Counting via DFS

Counting via DFS
● Define the hike graph to be the subgraph formed by the hike. 

Counting via DFS
● Define the hike graph to be the subgraph formed by the hike. 

● First, count all possible hike graphs by encoding a DFS traversal.

Counting via DFS
● Define the hike graph to be the subgraph formed by the hike. 

● First, count all possible hike graphs by encoding a DFS traversal.
○ Encoding 1 - At each step store whether it is a backtracking

step or which of the neighbors do we recurse to. d

Counting via DFS
● Define the hike graph to be the subgraph formed by the hike. 

● First, count all possible hike graphs by encoding a DFS traversal.
○ Encoding 1 - At each step store whether it is a backtracking

step or which of the neighbors do we recurse to. d

Counting via DFS
● Define the hike graph to be the subgraph formed by the hike. 

● First, count all possible hike graphs by encoding a DFS traversal.
○ Encoding 1 - At each step store whether it is a backtracking

step or which of the neighbors do we recurse to. d

○ If — Most vertices have degree 2. Compress the
encoding by storing list of vertices of degree .  

k = O (nδ(ε))
> 2

Counting via DFS
● Define the hike graph to be the subgraph formed by the hike. 

● First, count all possible hike graphs by encoding a DFS traversal.
○ Encoding 1 - At each step store whether it is a backtracking

step or which of the neighbors do we recurse to. d

○ If — Most vertices have degree 2. Compress the
encoding by storing list of vertices of degree .  

k = O (nδ(ε))
> 2

● Then, count the number of hikes corresponding to a given graph.

Conclusion
All good things come to an end

4.

Summary

Summary

● We give explicit constructions of -lifted graphs for abelian
 and a large range of lift sizes .

(H, ℓ)
H ℓ

Summary

● We give explicit constructions of -lifted graphs for abelian
 and a large range of lift sizes .

(H, ℓ)
H ℓ

Summary

● We give explicit constructions of -lifted graphs for abelian
 and a large range of lift sizes .

(H, ℓ)
H ℓ

● Main method of analysis is trace power method utilizing a careful
count of special walks on a large girth graph.

Summary

● We give explicit constructions of -lifted graphs for abelian
 and a large range of lift sizes .

(H, ℓ)
H ℓ

● Main method of analysis is trace power method utilizing a careful
count of special walks on a large girth graph.

Summary

● We give explicit constructions of -lifted graphs for abelian
 and a large range of lift sizes .

(H, ℓ)
H ℓ

● Main method of analysis is trace power method utilizing a careful
count of special walks on a large girth graph.

● As an application, we get new explicit LDPC codes — classical
and quantum.

Open Problems

Open Problems

● Extend the almost-Ramanujan bound to the entire range of lift-
sizes, possibly with a unified proof technique.

Open Problems

● Extend the almost-Ramanujan bound to the entire range of lift-
sizes, possibly with a unified proof technique.

Open Problems

● Extend the almost-Ramanujan bound to the entire range of lift-
sizes, possibly with a unified proof technique.

● Can we give strongly explicit constructions?

Open Problems

● Extend the almost-Ramanujan bound to the entire range of lift-
sizes, possibly with a unified proof technique.

● Can we give strongly explicit constructions?

Open Problems

● Extend the almost-Ramanujan bound to the entire range of lift-
sizes, possibly with a unified proof technique.

● Can we give strongly explicit constructions?

● Generalize the result to new families of non-abelian groups.

Thank you!

Thank you!

● Glad to hear your feedback/questions - tushant@uchicago.edu

Thank you!

● Glad to hear your feedback/questions - tushant@uchicago.edu

Thank you!

● Glad to hear your feedback/questions - tushant@uchicago.edu

● Fernando gave a (much) longer talk on the topic at IAS.

Thank you!

● Glad to hear your feedback/questions - tushant@uchicago.edu

● Fernando gave a (much) longer talk on the topic at IAS.
○ Check it out on Youtube!

