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The Problem Statement

e Given amodel and a certain input, craft an adversarial input.

e Intentionally designed to make the model err thus revealing its
brittleness.

e Adversarial image should be “close” to the original.

e Done by adding a small amount of noise along the right gradient



The Original Plan




—
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Examine the case of adversarially provided subsets for CNNs

Consider how the L2 norm based arguments provided by Goodfellow
carry over to earthmover distances

Provide a blackbox algorithm for the two above cases
Extend our CNN based arguments to Decision-Trees for ranking

Build either a whitebox/blackbox algorithm for constructing
adversarial inputs



The Baseline
Model
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Inception-v3
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State-of-the-art CNN for Image classification
Top 5-error of 5.6%

Pretrained on the ILSVRC2011

Used Tensorflow™ ‘s pretrained model

Much faster than its competing CNNs



Whitebox attack ’




The Classic FGSM Attack

-=> Vulnerability due to piecewise linearity of CNNs in high-dimensional spaces
-> Moveinthedirection of the gradient to maximize loss

-> This attack has been tried on various architecture but not on Inception v3 yet.

1 = esign (V. J(8,x,y)).

& = x + esign (Vg J(x))



Original Image Adversarial Image
Probability 92.47% Probability 6.73%



Blackbox attack
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Challenges

=> Much harder to mount - No longer access to the gradients which is
crucial for the FGSM attack

-> No knowledge of the underlying model size



The Solution

Learn a substitute model to imitate Inception-v3
Possible because of Transferability of Adversarial Examples?

Substitute model could be extremely simple (only 2 hidden layers)
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Attack the substitute model using FGSM

1.  Papernot et.al. Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial
Samples. https://arxiv.org/pdf/1605.07277 .pdf



Training the Substitute

-> Needs very few (~150) training points to learn the substitute
—> Label the images using the Blackbox
-> Use Jacobian-based augmentation to grow the dataset

=> Train the substitute using the new dataset



The Algorithm

Algorithm 1 - Substitute DNN Training: for oracle O,
a maximum number mazx, of substitute training epochs, a
substitute architecture F', and an initial training set Sj.

Input: 0, maz,, Sp, A

1: Define architecture F

2: for pe0 .. maz, — 1 do

& /] Label the substitute training set

4: D{—{{f,@(f}}:feﬁ‘p}

a: J/ Train F' on D to evaluate parameters 0

6: BF + train(F, D)

T /] Perform Jacobian-based dataset augmentation

8  Spp1— {F+ N sgn(Jr[O@)):£€ S,}US,
9: end for
10: return 05




Original Image Adversarial Image
Confidence = 25.26% Confidence = 25.26%



Restricted Query Model

-=> Usually, a blackbox attack places no restriction on the number of
gueries and this is exploited by the algorithm to create a nice substitute
model.

=> Butin many settings it might not be possible to actually make a lot of
queries.

-=>  We thuslook at how the performance changes by such a restriction.






Effect of Augmentation epochs

Number of Images Epochs Epsilon Misclassification Rate
150 4 0.3 58.00 %

150 3 0.3 33.53 %

150 1 0.3 52.118 %

125 4 0.3 54.52 %

100 3 0.3 62.12 %




Wait that's counter intuitive !

-> It would be expected that a decrease in number of images should give
lesser misclassification.

-> This however can be explained when one actually looks at the photos.



The bad epsilon

Data = 150, Eps = 0.05, Data = 100, Eps = 0.1, Data = 150, Eps = 0.3,
Confidence = 25.26% Confidence = 68.94% Confidence = 2.10%
Misclassfn. Rate = 28.36% Misclassfn. Rate = 37.45% Misclassfn. Rate = 58.00%



Implementation Challenges

=> Adjusting cleverhans modules to suit the purpose and learning to use
the Tensorflow™ API

- Handling BIG data (ImageNet)

-> Battling with limited computing resources for blackbox attack



A Side Approach



Sampling attack on low-dimensional
data

=> Coreidea: Use Laplace approximation

-> Suppose the FGSM approach yields, for every candidate input vector X,
a corresponding X' that will break the system

=> But, this assumes a gradient oracle

=> Letususeitfurther



Laplace approximation around local
maxima

Assumptions:

>
>
>

vl

FGSM model is yielding to us a posterior distribution’s mean

Model this posterior distribution as Normal w/ mean = MAP value = FGSM output
Since gradient is available as an oracle, query it for every gradient again to get
Hessian

In this case the posterior around the MAP value is known to be ~ N (w, H-1)
Where w is what is returned from FGSM, and Hessian is inverted for covariance
Sample from this distribution instead of playing MAP value every time



Some experimental results of this attack

Since computing Hessian and inversion is expensive, ran it on small datasets ( Iris, Abalone ) - these
datasets have pre-defined classes and are well modeled by a variety of techniques such as GMMs, KDEs

Step size epsilon is set at 2*sigma ( sigma = std-dev along axis ), for hessian attack, step size is lowered by
a fraction to give each the same L2 distances. All density estimation done via scikit-learn + iGMM code
available on github ( only 2 classes used for both, iris first 2 types (setosa and versicolour), abalone M and
I'). Gradient of relative log probability used to make the oracle.

Dataset Hessian flip FGSM flip Hessian flip FGSM flip
chance (iGMM) chance(iGMM) chance(KDE) chance(KDE)

Iris 60.3% 57.2% 30.2% 12.7%

Abalone 32 to 58% 47.6% 22.4% 5.6%




What's Next ?



Generalizing the norm

->  Current methods of crafting of adversarial examples uses the Ip norms to constrain the added “noise"
in order to prevent a visible change in the input.

The idea was to try to construct an FGSM -like attack using Earthmover Distance (EMD).
This, however, turned out to be harder than anticipated.

A recent publication® discusses this briefly and calls it “ a nice open problem".
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We would like to investigate it further in detail in the future.

1.  Tramer, Papernot et.al. Space of Transferable Adversarial Examples. https://arxiv.org/abs/1704.03453



Breaking classification for DTs

-

Algorithm? proposed by Papernot et.al. for classification using DTs
€ Find the leaf node of the input in DT

€ Findthe nearest leaf in the tree where the output class changes
€ Perturbs the training point to change its output

Fails for ranking!

Papernot et.al. Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial
Samples. https://arxiv.org/pdf/1605.07277 .pdf



Ranking using DTs

-=> LambdaMart: Boosted regression trees to rank search queries
=> Usedinthe Bing search engine

-=> Improves the previous LambdaRank model using DTs



Challenges for Ranking

Moving to the nearest leaves doesn'’t help in general
Changing the regression values of the leaves not enough!

Need to change the order of ranking
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Ranking using DTs is much more robust!



Questions?



